The Schrödinger–Maxwell system with Dirac mass
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 5, page 773-793
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] Adami R., Dell'Antonio G., Figari R., Teta A., The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (1) (2003) 477-500. Zbl1028.35137MR1972871
- [2] Adami R., Dell'Antonio G., Figari R., Teta A., Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire21 (1) (2004) 121-137. Zbl1042.35070MR2037249
- [3] Adami R., Teta A., A class of nonlinear Schrödinger equations with concentrated nonlinearity, J. Func. Anal.180 (1) (2001) 148-175. Zbl0979.35130MR1814425
- [4] Agmon S., The approach to the Dirichlet problem. I. Regularity theorems, Ann. Scuola Norm. Sup. Pisa (3)13 (1959) 405-448. Zbl0093.10601MR125306
- [5] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable Models in Quantum Mechanics, second ed., AMS Chelsea Publishing, 2005. Zbl1078.81003MR2105735
- [6] Avron J., Herbst I., Simon B., Schrödinger operators with magnetic fields I. General interaction, Duke Math. J.45 (4) (1978) 847-883. Zbl0399.35029MR518109
- [7] Avron J., Herbst I., Simon B., Schrödinger operators with magnetic fields I. Atoms in homogeneous magnetic fields, Comm. Math. Phys.79 (4) (1981) 529-572. Zbl0464.35086MR623966
- [8] Benci V., Fortunato D., An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal.11 (2) (1998) 283-293. Zbl0926.35125
- [9] Benci V., Fortunato D., Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations, Rev. Math. Phys.14 (4) (2002) 409-420. Zbl1037.35075
- [10] Coclite G.M., A multiplicity result for the Schrödinger–Maxwell equations, Ann. Polon. Math.79 (1) (2002) 21-30. Zbl1130.35333
- [11] Coclite G.M., A multiplicity result for the nonlinear Schrödinger–Maxwell equations, Comm. Appl. Anal.7 (2–3) (2003) 417-423. Zbl1085.81510
- [12] Coclite G.M., Georgiev V., Solitary waves for Maxwell–Schrödinger equations, Electron. J. Differential Equations2004 (94) (2004) 1-31. Zbl1064.35180
- [13] Combes J.M., Schrader R., Seiler R., Classical bounds and limits for energy distributions of Hamiltonian operators in electromagnetic fields, Ann. Phys.111 (1) (1978) 1-18. MR489509
- [14] Esteban M.J., Georgiev V., Sere E., Stationary solutions of the Maxwell–Dirac and the Klein–Gordon–Dirac equations, Calc. Var.4 (3) (1996) 265-281. Zbl0869.35105