The Schrödinger–Maxwell system with Dirac mass
Annales de l'I.H.P. Analyse non linéaire (2007)
- Volume: 24, Issue: 5, page 773-793
- ISSN: 0294-1449
Access Full Article
topHow to cite
topCoclite, G. M., and Holden, H.. "The Schrödinger–Maxwell system with Dirac mass." Annales de l'I.H.P. Analyse non linéaire 24.5 (2007): 773-793. <http://eudml.org/doc/78759>.
@article{Coclite2007,
author = {Coclite, G. M., Holden, H.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Schrödinger-Maxwell system; point interaction},
language = {eng},
number = {5},
pages = {773-793},
publisher = {Elsevier},
title = {The Schrödinger–Maxwell system with Dirac mass},
url = {http://eudml.org/doc/78759},
volume = {24},
year = {2007},
}
TY - JOUR
AU - Coclite, G. M.
AU - Holden, H.
TI - The Schrödinger–Maxwell system with Dirac mass
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 5
SP - 773
EP - 793
LA - eng
KW - Schrödinger-Maxwell system; point interaction
UR - http://eudml.org/doc/78759
ER -
References
top- [1] Adami R., Dell'Antonio G., Figari R., Teta A., The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire20 (1) (2003) 477-500. Zbl1028.35137MR1972871
- [2] Adami R., Dell'Antonio G., Figari R., Teta A., Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire21 (1) (2004) 121-137. Zbl1042.35070MR2037249
- [3] Adami R., Teta A., A class of nonlinear Schrödinger equations with concentrated nonlinearity, J. Func. Anal.180 (1) (2001) 148-175. Zbl0979.35130MR1814425
- [4] Agmon S., The approach to the Dirichlet problem. I. Regularity theorems, Ann. Scuola Norm. Sup. Pisa (3)13 (1959) 405-448. Zbl0093.10601MR125306
- [5] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable Models in Quantum Mechanics, second ed., AMS Chelsea Publishing, 2005. Zbl1078.81003MR2105735
- [6] Avron J., Herbst I., Simon B., Schrödinger operators with magnetic fields I. General interaction, Duke Math. J.45 (4) (1978) 847-883. Zbl0399.35029MR518109
- [7] Avron J., Herbst I., Simon B., Schrödinger operators with magnetic fields I. Atoms in homogeneous magnetic fields, Comm. Math. Phys.79 (4) (1981) 529-572. Zbl0464.35086MR623966
- [8] Benci V., Fortunato D., An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal.11 (2) (1998) 283-293. Zbl0926.35125
- [9] Benci V., Fortunato D., Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations, Rev. Math. Phys.14 (4) (2002) 409-420. Zbl1037.35075
- [10] Coclite G.M., A multiplicity result for the Schrödinger–Maxwell equations, Ann. Polon. Math.79 (1) (2002) 21-30. Zbl1130.35333
- [11] Coclite G.M., A multiplicity result for the nonlinear Schrödinger–Maxwell equations, Comm. Appl. Anal.7 (2–3) (2003) 417-423. Zbl1085.81510
- [12] Coclite G.M., Georgiev V., Solitary waves for Maxwell–Schrödinger equations, Electron. J. Differential Equations2004 (94) (2004) 1-31. Zbl1064.35180
- [13] Combes J.M., Schrader R., Seiler R., Classical bounds and limits for energy distributions of Hamiltonian operators in electromagnetic fields, Ann. Phys.111 (1) (1978) 1-18. MR489509
- [14] Esteban M.J., Georgiev V., Sere E., Stationary solutions of the Maxwell–Dirac and the Klein–Gordon–Dirac equations, Calc. Var.4 (3) (1996) 265-281. Zbl0869.35105
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.