On the optimality of velocity averaging lemmas

Camillo de Lellis; Michael Westdickenberg

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 6, page 1075-1085
  • ISSN: 0294-1449

How to cite

top

de Lellis, Camillo, and Westdickenberg, Michael. "On the optimality of velocity averaging lemmas." Annales de l'I.H.P. Analyse non linéaire 20.6 (2003): 1075-1085. <http://eudml.org/doc/78603>.

@article{deLellis2003,
author = {de Lellis, Camillo, Westdickenberg, Michael},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {kinetic equations; velocity averaging; regularity; Burgers equation; finite entropy dissipation},
language = {eng},
number = {6},
pages = {1075-1085},
publisher = {Elsevier},
title = {On the optimality of velocity averaging lemmas},
url = {http://eudml.org/doc/78603},
volume = {20},
year = {2003},
}

TY - JOUR
AU - de Lellis, Camillo
AU - Westdickenberg, Michael
TI - On the optimality of velocity averaging lemmas
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 6
SP - 1075
EP - 1085
LA - eng
KW - kinetic equations; velocity averaging; regularity; Burgers equation; finite entropy dissipation
UR - http://eudml.org/doc/78603
ER -

References

top
  1. [1] Ambrosio L., De Lellis C., Mantegazza C., Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations9 (4) (1999) 327-355. Zbl0960.49013MR1731470
  2. [2] Aviles P., Giga Y., A mathematical problem related to the physical theory of liquid crystal configurations, Proc. Centre Math. Anal. Austral. Nat. Univ.12 (1987) 1-16. MR924423
  3. [3] De Giorgi E., Definizione ed espressione analitica del perimetro di un insieme, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat.14 (8) (1953) 390-393. Zbl0051.29403MR56066
  4. [4] C. De Lellis, Energie di linea per campi di gradienti, Ba. D. Thesis, University of Pisa, 1999. 
  5. [5] C. De Lellis, F. Otto, M. Westdickenberg, Structure of entropy solutions for multi-dimensional scalar conservation laws, Preprint n° 95/2002 at http://www.mis.mpg.de/preprints/2002. Zbl1036.35127MR1985613
  6. [6] Jabin P.-E., Perthame B., Regularity in kinetic formulations via averaging lemmas. A tribute to J.-L. Lions, ESAIM Control Optim. Calc. Var.8 (2002) 761-774. Zbl1065.35185MR1932972
  7. [7] Jin W., Kohn R.V., Singular perturbation and the energy of folds, J. Nonlinear Sci.10 (3) (2000) 355-390. Zbl0973.49009MR1752602
  8. [8] Lions P.-L., Perthame B., Tadmor E., A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc.7 (1994) 169-191. Zbl0820.35094MR1201239
  9. [9] Oleinik O.A., Discontinuous solutions of nonlinear differential equations, Transl. Amer. Math. Soc. Ser. 226 (1957) 95-172. MR151737
  10. [10] Triebel H., Fractals and Spectra Related to Fourier Analysis and Function Spaces, Monographs Math., 91, Birkhäuser, Basel, 1997. Zbl0898.46030MR1484417
  11. [11] Triebel H., Winkelvoss H., A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces, Studia Math.121 (2) (1996) 149-166. Zbl0864.46020MR1418396

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.