Regularity in kinetic formulations via averaging lemmas

Pierre-Emmanuel Jabin; Benoît Perthame

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 8, page 761-774
  • ISSN: 1292-8119

Abstract

top
We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like γ = 3 in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is to use velocity regularity for the solution to the transport equation under consideration. The method of proof is based on a decomposition of the density in Fourier space, combined with the K -method of real interpolation.

How to cite

top

Jabin, Pierre-Emmanuel, and Perthame, Benoît. "Regularity in kinetic formulations via averaging lemmas." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 761-774. <http://eudml.org/doc/245168>.

@article{Jabin2002,
abstract = {We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like $ \gamma =3$ in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is to use velocity regularity for the solution to the transport equation under consideration. The method of proof is based on a decomposition of the density in Fourier space, combined with the $K$-method of real interpolation.},
author = {Jabin, Pierre-Emmanuel, Perthame, Benoît},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {regularizing effects; kinetic formulation; averaging lemmas; hyperbolic equations; line-energy Ginzburg–Landau; isentropic gas dynamics; transport equation},
language = {eng},
pages = {761-774},
publisher = {EDP-Sciences},
title = {Regularity in kinetic formulations via averaging lemmas},
url = {http://eudml.org/doc/245168},
volume = {8},
year = {2002},
}

TY - JOUR
AU - Jabin, Pierre-Emmanuel
AU - Perthame, Benoît
TI - Regularity in kinetic formulations via averaging lemmas
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 761
EP - 774
AB - We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like $ \gamma =3$ in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is to use velocity regularity for the solution to the transport equation under consideration. The method of proof is based on a decomposition of the density in Fourier space, combined with the $K$-method of real interpolation.
LA - eng
KW - regularizing effects; kinetic formulation; averaging lemmas; hyperbolic equations; line-energy Ginzburg–Landau; isentropic gas dynamics; transport equation
UR - http://eudml.org/doc/245168
ER -

References

top
  1. [1] L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equations 9 (1999) 327-355. Zbl0960.49013MR1731470
  2. [2] J. Bergh and J. Löfström, Interpolation spaces, an introduction. Springer-Verlag, A Ser. of Comprehensive Stud. in Math. 223 (1976). Zbl0344.46071MR482275
  3. [3] Y. Brenier and L. Corrias, A kinetic formulation formulti-branch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 169-190. Zbl0893.35068MR1614638
  4. [4] M. Bézard, Régularité L p précisée des moyennes dans les équations de transport. Bull. Soc. Math. France 122 (1994) 29-76. Zbl0798.35025MR1259108
  5. [5] F. Bouchut and L. Desvillettes, Averaging lemmas without time Fourier transform and applications to discretized kineticequations. Proc. Roy. Soc. Edinburgh Ser. A 129 (1999) 19-36. Zbl0933.35159MR1669221
  6. [6] F. Bouchut, F. Golse and M. Pulvirenti, Kinetic equations and asymptotic theory. Gauthiers-Villars, Ser. in Appl. Math. (2000). Zbl0979.82048MR2065070
  7. [7] A. Desimone, R.W. Kohn, S. Müller and F. Otto, Magnetic microstructures, a paradigm of multiscale problems. Proc. of ICIAM (to appear). Zbl0991.82038
  8. [8] R. DeVore and G.P. Petrova, The averaging lemma. J. Amer. Math. Soc. 14 (2001) 279-296. Zbl1001.35079MR1815213
  9. [9] R. DiPerna and P.L. Lions, Global weak solutions of Vlasov–Maxwell systems. Comm. Pure Appl. Math. 42 (1989) 729-757. Zbl0698.35128
  10. [10] R. DiPerna, P.L. Lions and Y. Meyer, L p regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991) 271-287. Zbl0763.35014MR1127927
  11. [11] P. Gérard, Microlocal defect measures. Comm. Partial Differential Equations 16 (1991) 1761-1794. Zbl0770.35001MR1135919
  12. [12] F. Golse, Quelques résultats de moyennisation pour les équations aux dérivées partielles. Rend. Sem. Mat. Univ. Pol. Torino, Fascicolo Speciale 1988 Hyperbolic equations (1987) 101-123. Zbl0679.35017MR1007370
  13. [13] F. Golse, P.L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 26 (1988) 110-125. Zbl0652.47031MR923047
  14. [14] F. Golse, B. Perthame and R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d’un opérateur de transport. C. R. Acad. Sci. Paris Sér. I Math. 301 (1985) 341-344. Zbl0591.45007
  15. [15] S. Hwang and A. Tzavaras, Kinetic decomposition of approximate solutions to conservation laws: Applications to relaxation and diffusion-dispersion approximations, Preprint. University of Wisconsin, Madison (2001). Zbl1020.35054MR1916562
  16. [16] P.-E. Jabin and B. Perthame, Compactness in Ginzburg–Landau energy by kinetic averaging. Comm. Pure Appl. Math. 54 (2001) 1096-1109. Zbl1124.35312
  17. [17] P.-E. Jabin, F. Otto and B. Perthame, Line-energy Ginzburg–Landau models: Zero-energy states. Ann. Sc. Norm. Sup. Pisa (to appear). Zbl1072.35051
  18. [18] J.-L. Lions and J. Peetre, Sur une classe d’espaces d’interpolation. Inst. Hautes Études Sci. Publ. Math. 19 (1964) 5-68. Zbl0148.11403
  19. [19] P.L. Lions, Régularité optimale des moyennes en vitesse. C. R. Acad. Sci. Sér. I Math. 320 (1995) 911-915. Zbl0827.35110MR1328710
  20. [20] P.L. Lions, B. Perthame and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related questions. J. Amer. Math. Soc. 7 (1994) 169-191. Zbl0820.35094MR1201239
  21. [21] P.L. Lions, B. Perthame and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p -systems. Comm. Math. Phys. 163 (1994) 415-431. Zbl0799.35151MR1284790
  22. [22] O.A. Oleĭnik, On Cauchy’s problem for nonlinear equations in a class of discontinuous functions. Doklady Akad. Nauk SSSR (N.S.) 95 (1954) 451-454. Zbl0058.32101
  23. [23] B. Perthame, Kinetic Formulations of conservation laws. Oxford University Press, Oxford Ser. in Math. and Its Appl. (2002). Zbl1030.35002MR2064166
  24. [24] B. Perthame and P.E. Souganidis, A limiting case for velocity averaging. Ann. Sci. École Norm. Sup. (4) 31 (1998) 591-598. Zbl0956.45010MR1634024
  25. [25] M. Porthileiro, Compactness of velocity averages. Preprint. Zbl1033.35022
  26. [26] T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. Preprint (2001). Zbl1094.35125MR1974456
  27. [27] A. Vasseur, Time regularity for the system of isentropic gas dynamics with γ = 3 . Comm. Partial Differential Equations 24 (1999) 1987-1997. Zbl0940.35169MR1720782
  28. [28] M. Westdickenberg, some new velocity averaging results. SIAM J. Math. Anal. (to appear). Zbl1067.35021MR1897699
  29. [29] C. Cheverry, Regularizing effects for multidimensional scalar conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 413-472. Zbl0966.35074MR1782740

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.