Weak solutions for a hyperbolic system with unilateral constraint and mass loss

F Berthelin; F Bouchut

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 6, page 975-997
  • ISSN: 0294-1449

How to cite


Berthelin, F, and Bouchut, F. "Weak solutions for a hyperbolic system with unilateral constraint and mass loss." Annales de l'I.H.P. Analyse non linéaire 20.6 (2003): 975-997. <http://eudml.org/doc/78607>.

author = {Berthelin, F, Bouchut, F},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {sticky blocks dynamics; Euler equations; weak entropy formulation},
language = {eng},
number = {6},
pages = {975-997},
publisher = {Elsevier},
title = {Weak solutions for a hyperbolic system with unilateral constraint and mass loss},
url = {http://eudml.org/doc/78607},
volume = {20},
year = {2003},

AU - Berthelin, F
AU - Bouchut, F
TI - Weak solutions for a hyperbolic system with unilateral constraint and mass loss
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 6
SP - 975
EP - 997
LA - eng
KW - sticky blocks dynamics; Euler equations; weak entropy formulation
UR - http://eudml.org/doc/78607
ER -


  1. [1] Barthélemy L, Problème d'obstacle pour une équation quasi-linéaire du premier ordre, Ann. Fac. Sci. Toulouse Math.9 (1988) 137-159. Zbl0631.47038MR1425004
  2. [2] Berthelin F, Existence and weak stability for a pressureless model with unilateral constraint, Math. Models Methods Appl. Sci.12 (2002) 249-272. Zbl1027.35079MR1892581
  3. [3] Berthelin F, Bouchut F, Solution with finite energy to a BGK system relaxing to isentropic gas dynamics, Ann. Fac. Sci. Toulouse9 (2000) 605-630. Zbl1006.82023MR1838140
  4. [4] Berthelin F, Bouchut F, Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics, Asymptotic Analysis31 (2002) 153-176. Zbl1032.76064MR1938602
  5. [5] Bouchut F, On zero pressure gas dynamics, in: Advances in Kinetic Theory and Computing, Ser. Adv. Math. Appl. Sci., 22, World Scientific, River Edge, NJ, 1994, pp. 171-190. Zbl0863.76068MR1323183
  6. [6] Bouchut F, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Stat. Phys.95 (1999) 113-170. Zbl0957.82028MR1705583
  7. [7] Bouchut F, Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Ration. Mech. Anal.157 (2001) 75-90. Zbl0979.35032MR1822415
  8. [8] Bouchut F, Brenier Y, Cortes J, Ripoll J.-F, A hierarchy of models for two-phase flows, J. Nonlinear Sci.10 (2000) 639-660. Zbl0998.76088MR1799394
  9. [9] Bouchut F, James F, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, Comm. Partial Differential Equations24 (1999) 2173-2189. Zbl0937.35098MR1720754
  10. [10] Boudin L, A solution with bounded expansion rate to the model of viscous pressureless gases, SIAM J. Math. Anal.32 (2000) 172-193. Zbl0973.35057MR1766512
  11. [11] Brenier Y, Corrias L, A kinetic formulation for multi-branch entropy solutions of scalar conservation laws, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998) 169-190. Zbl0893.35068MR1614638
  12. [12] Brenier Y, Grenier E, Sticky particles and scalar consevation laws, SIAM J. Numer. Anal.35 (1998) 2317-2328. Zbl0924.35080MR1655848
  13. [13] B. Després, Equality or convex inequality constraints and hyperbolic systems of conservation laws with entropy, Preprint, 2001. 
  14. [14] Di Perna R.J, Lions P.-L, Meyer Y, Lp regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1991) 271-287. Zbl0763.35014MR1127927
  15. [15] E W, Rykov Y.G, Sinai Y.G, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys.177 (1996) 349-380. Zbl0852.35097MR1384139
  16. [16] Gagneux G, Lefevère A.M, Madaune-Tort M, Une approche analytique d'un modèle black-oil des écoulements triphasiques compressibles en ingénierie pétrolière, J. Mécanique Théor. Appl.6 (1987) 547-569. Zbl0629.76109MR912215
  17. [17] Grenier E, Existence globale pour le système des gaz sans pression, C. R. Acad. Sci. Paris Sér. I Math.321 (2) (1995) 171-174. Zbl0837.35088MR1345441
  18. [18] Lévi L, Problèmes unilatéraux pour des équations non linéaires de convection-réaction, Ann. Fac. Sci. Toulouse Math.4 (1995) 593-631. Zbl0861.35058MR1607514
  19. [19] Lévi L, Obstacle problems for scalar conservation laws, M2AN Math. Model. Numer. Anal.35 (2001) 575-593. Zbl0990.35096MR1837085
  20. [20] Lions P.-L, Masmoudi N, On a free boundary barotropic model, Ann. Inst. H. Poincaré Anal. Non linéaire16 (1999) 373-410. Zbl0917.76073MR1687274
  21. [21] Lions P.-L, Perthame B, Souganidis P.E, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math.49 (1996) 599-638. Zbl0853.76077MR1383202
  22. [22] Mignot F, Puel J.-P, Inéquations variationnelles et quasivariationnelles hyperboliques du premier ordre, J. Math. Pures Appl. (9)55 (1976) 353-378. Zbl0359.35050MR499769
  23. [23] Perthame B, Tadmor E, A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys.136 (1991) 501-517. Zbl0729.76070MR1099693
  24. [24] Serre D, Relaxation semi-linéaire et cinétique des systèmes de lois de conservation, Ann. Inst. H. Poincaré Anal. Non linéaire17 (2000) 169-192. Zbl0963.35117MR1753092
  25. [25] Vasseur A, Kinetic semidiscretization of scalar conservation laws and convergence by using averaging lemmas, SIAM J. Numer. Anal.36 (1999) 465-474. Zbl0920.65060MR1668278
  26. [26] Vasseur A, Convergence of a semi-discrete kinetic scheme for the system of isentropic gas dynamics with γ=3, Indiana Univ. Math. J.48 (1999) 347-364. Zbl1020.65054

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.