Relaxations semi-linéaire et cinétique des systèmes de lois de conservation

Denis Serre

Annales de l'I.H.P. Analyse non linéaire (2000)

  • Volume: 17, Issue: 2, page 169-192
  • ISSN: 0294-1449

How to cite

top

Serre, Denis. "Relaxations semi-linéaire et cinétique des systèmes de lois de conservation." Annales de l'I.H.P. Analyse non linéaire 17.2 (2000): 169-192. <http://eudml.org/doc/78490>.

@article{Serre2000,
author = {Serre, Denis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {bounded measurable initial functions; semilinear relaxation system; entropy solution},
language = {fre},
number = {2},
pages = {169-192},
publisher = {Gauthier-Villars},
title = {Relaxations semi-linéaire et cinétique des systèmes de lois de conservation},
url = {http://eudml.org/doc/78490},
volume = {17},
year = {2000},
}

TY - JOUR
AU - Serre, Denis
TI - Relaxations semi-linéaire et cinétique des systèmes de lois de conservation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 2
SP - 169
EP - 192
LA - fre
KW - bounded measurable initial functions; semilinear relaxation system; entropy solution
UR - http://eudml.org/doc/78490
ER -

References

top
  1. [1] Brenier Y., Corrias L., Natalini R., A relaxation approximation to a moment hierarchy of conservation laws with kinetic formulation, Quaderno IAC23 (1997). Zbl0933.35128
  2. [2] Chen G.Q., Liu T.P., Zero relaxation and dissipation limits for hyperbolic conservation laws, Comm. Pure Appl. Math.46 (1994) 787-830. Zbl0797.35113MR1213992
  3. [3] Chen G.Q., Levermore C.D., Liu T.P., Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math.45 (1993) 755-781. Zbl0797.35113MR1280989
  4. [4] Chuey K.N., Conley C.C., Smoller J.K., Positively invariant regions of nonlinear diffusion equations, Indiana Univ. Math. J.26 (1977) 373-392. Zbl0368.35040MR430536
  5. [5] Collet J.-F., Rascle M., Convergence of the relaxation approximation to a scalar nonlinear hyperbolic equation arising in chromatography, Z. Angew. Math. Phys.47 (1996) 400-409. Zbl0866.35061MR1394915
  6. [6] DiPerna R.J., Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal.82 (1983) 27-70. Zbl0519.35054MR684413
  7. [7] Heibig A., Existence and uniqueness of solutions for some hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal.126 (1994) 79-101. Zbl0810.35058MR1268050
  8. [8] Hoff D., Invariant regions for systems of conservation laws, Trans. Amer. Math. Soc.289 (1985) 591-610. Zbl0535.35056MR784005
  9. [9] Jin S., A convex entropy for a hyperbolic system with relaxation, J. Differential Equations127 (1996) 95-107. Zbl0853.35066MR1387259
  10. [10] Jin S., Xin Z., The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math.48 (1995) 235-277. Zbl0826.65078MR1322811
  11. [11] Lattanzio C., Serre D., Stability and convergence of relaxation schemes towards systems of conservation laws, Soumis. Zbl0941.35053
  12. [12] Liu T.-P., Hyperbolic conservation laws with relaxation, Comm. Math. Phys.108 (1987) 153-175. Zbl0633.35049MR872145
  13. [13] Murat F., L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q &lt; 2, J. Math. Pures et Appl.60 (1981) 309-322. Zbl0471.46020
  14. [14] Natalini R., Convergence to equilibrium for the relaxation approximation of conservation laws, Comm. Pure Appl. Math.49 (1996) 795-823. Zbl0872.35064MR1391756
  15. [15] Natalini R., Recent results on hyperbolic relaxation problems, in: Analysis of Systems of Conervation Laws, Aachen, 1997, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., Vol. 99, Chapman & Hall/CRC, Boca Raton, FL, 1999, pp. 128-197. Zbl0940.35127
  16. [16] Natalini R., A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws, J. Differential Equations148 (2) (1998) 292-317. Zbl0911.35073MR1643175
  17. [ 17] Schochet S., The instant-response limit in Whitham's nonlinear traffic-flow model: uniform well-posedness, Asymptotic Anal.1 (1988) 263-282. Zbl0685.35099MR972301
  18. [ 18] Serre D., Systèmes de Lois de Conservation, Diderot, Paris, 1996. 
  19. [19] Serre D., Shearer J., Convergence with physical viscosity for nonlinear elasticity, Preprint éternel, Lyon, 1993. 
  20. [20] Shearer J., Global existence and compactness in LP for the quasi-linear wave equation, Comm. Partial Differential Equations19 (1994) 1829-1877. Zbl0855.35078MR1301175
  21. [21] Tartar L., Compensated compactness and applications to partial differential equations, in: Knops R.J. (Ed.), Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Research Notes in Math., Vol. 39, Pitman, Londres, 1979, pp. 136-192. Zbl0437.35004MR584398
  22. [22] Tveito A., Winther R., On the rate of convergence to equilibrium for a system of conservation laws with a relaxation term, SIAM J. Math. Anal.28 (1997) 136- 161. Zbl0868.35073MR1427731
  23. [23] Tzavaras A., Materials with internal variables and relaxation to conservation laws, Preprint, Madison, 1998. MR1718478
  24. [24] Whitham J., Linear and Non-Linear Waves, Wiley, New York, 1974. Zbl0373.76001

Citations in EuDML Documents

top
  1. Christos Arvanitis, Theodoros Katsaounis, Charalambos Makridakis, Adaptive finite element relaxation schemes for hyperbolic conservation laws
  2. Christos Arvanitis, Theodoros Katsaounis, Charalambos Makridakis, Adaptive Finite Element Relaxation Schemes for Hyperbolic Conservation Laws
  3. Sophia Demoulini, David M. A. Stuart, Athanasios E. Tzavaras, Construction of entropy solutions for one dimensional elastodynamics via time discretisation
  4. Florent Berthelin, François Bouchut, Solution with finite energy to a BGK system relaxing to isentropic gas dynamics
  5. F Berthelin, F Bouchut, Weak solutions for a hyperbolic system with unilateral constraint and mass loss

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.