Relaxations semi-linéaire et cinétique des systèmes de lois de conservation
Annales de l'I.H.P. Analyse non linéaire (2000)
- Volume: 17, Issue: 2, page 169-192
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSerre, Denis. "Relaxations semi-linéaire et cinétique des systèmes de lois de conservation." Annales de l'I.H.P. Analyse non linéaire 17.2 (2000): 169-192. <http://eudml.org/doc/78490>.
@article{Serre2000,
author = {Serre, Denis},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {bounded measurable initial functions; semilinear relaxation system; entropy solution},
language = {fre},
number = {2},
pages = {169-192},
publisher = {Gauthier-Villars},
title = {Relaxations semi-linéaire et cinétique des systèmes de lois de conservation},
url = {http://eudml.org/doc/78490},
volume = {17},
year = {2000},
}
TY - JOUR
AU - Serre, Denis
TI - Relaxations semi-linéaire et cinétique des systèmes de lois de conservation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 2
SP - 169
EP - 192
LA - fre
KW - bounded measurable initial functions; semilinear relaxation system; entropy solution
UR - http://eudml.org/doc/78490
ER -
References
top- [1] Brenier Y., Corrias L., Natalini R., A relaxation approximation to a moment hierarchy of conservation laws with kinetic formulation, Quaderno IAC23 (1997). Zbl0933.35128
- [2] Chen G.Q., Liu T.P., Zero relaxation and dissipation limits for hyperbolic conservation laws, Comm. Pure Appl. Math.46 (1994) 787-830. Zbl0797.35113MR1213992
- [3] Chen G.Q., Levermore C.D., Liu T.P., Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math.45 (1993) 755-781. Zbl0797.35113MR1280989
- [4] Chuey K.N., Conley C.C., Smoller J.K., Positively invariant regions of nonlinear diffusion equations, Indiana Univ. Math. J.26 (1977) 373-392. Zbl0368.35040MR430536
- [5] Collet J.-F., Rascle M., Convergence of the relaxation approximation to a scalar nonlinear hyperbolic equation arising in chromatography, Z. Angew. Math. Phys.47 (1996) 400-409. Zbl0866.35061MR1394915
- [6] DiPerna R.J., Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal.82 (1983) 27-70. Zbl0519.35054MR684413
- [7] Heibig A., Existence and uniqueness of solutions for some hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal.126 (1994) 79-101. Zbl0810.35058MR1268050
- [8] Hoff D., Invariant regions for systems of conservation laws, Trans. Amer. Math. Soc.289 (1985) 591-610. Zbl0535.35056MR784005
- [9] Jin S., A convex entropy for a hyperbolic system with relaxation, J. Differential Equations127 (1996) 95-107. Zbl0853.35066MR1387259
- [10] Jin S., Xin Z., The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math.48 (1995) 235-277. Zbl0826.65078MR1322811
- [11] Lattanzio C., Serre D., Stability and convergence of relaxation schemes towards systems of conservation laws, Soumis. Zbl0941.35053
- [12] Liu T.-P., Hyperbolic conservation laws with relaxation, Comm. Math. Phys.108 (1987) 153-175. Zbl0633.35049MR872145
- [13] Murat F., L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q < 2, J. Math. Pures et Appl.60 (1981) 309-322. Zbl0471.46020
- [14] Natalini R., Convergence to equilibrium for the relaxation approximation of conservation laws, Comm. Pure Appl. Math.49 (1996) 795-823. Zbl0872.35064MR1391756
- [15] Natalini R., Recent results on hyperbolic relaxation problems, in: Analysis of Systems of Conervation Laws, Aachen, 1997, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., Vol. 99, Chapman & Hall/CRC, Boca Raton, FL, 1999, pp. 128-197. Zbl0940.35127
- [16] Natalini R., A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws, J. Differential Equations148 (2) (1998) 292-317. Zbl0911.35073MR1643175
- [ 17] Schochet S., The instant-response limit in Whitham's nonlinear traffic-flow model: uniform well-posedness, Asymptotic Anal.1 (1988) 263-282. Zbl0685.35099MR972301
- [ 18] Serre D., Systèmes de Lois de Conservation, Diderot, Paris, 1996.
- [19] Serre D., Shearer J., Convergence with physical viscosity for nonlinear elasticity, Preprint éternel, Lyon, 1993.
- [20] Shearer J., Global existence and compactness in LP for the quasi-linear wave equation, Comm. Partial Differential Equations19 (1994) 1829-1877. Zbl0855.35078MR1301175
- [21] Tartar L., Compensated compactness and applications to partial differential equations, in: Knops R.J. (Ed.), Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Research Notes in Math., Vol. 39, Pitman, Londres, 1979, pp. 136-192. Zbl0437.35004MR584398
- [22] Tveito A., Winther R., On the rate of convergence to equilibrium for a system of conservation laws with a relaxation term, SIAM J. Math. Anal.28 (1997) 136- 161. Zbl0868.35073MR1427731
- [23] Tzavaras A., Materials with internal variables and relaxation to conservation laws, Preprint, Madison, 1998. MR1718478
- [24] Whitham J., Linear and Non-Linear Waves, Wiley, New York, 1974. Zbl0373.76001
Citations in EuDML Documents
top- Christos Arvanitis, Theodoros Katsaounis, Charalambos Makridakis, Adaptive finite element relaxation schemes for hyperbolic conservation laws
- Christos Arvanitis, Theodoros Katsaounis, Charalambos Makridakis, Adaptive Finite Element Relaxation Schemes for Hyperbolic Conservation Laws
- Sophia Demoulini, David M. A. Stuart, Athanasios E. Tzavaras, Construction of entropy solutions for one dimensional elastodynamics via time discretisation
- Florent Berthelin, François Bouchut, Solution with finite energy to a BGK system relaxing to isentropic gas dynamics
- F Berthelin, F Bouchut, Weak solutions for a hyperbolic system with unilateral constraint and mass loss
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.