Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity

Riccardo Adami; Gianfausto Dell'Antonio; Rodolfo Figari; Alessandro Teta

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 1, page 121-137
  • ISSN: 0294-1449

How to cite

top

Adami, Riccardo, et al. "Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity." Annales de l'I.H.P. Analyse non linéaire 21.1 (2004): 121-137. <http://eudml.org/doc/78609>.

@article{Adami2004,
author = {Adami, Riccardo, Dell'Antonio, Gianfausto, Figari, Rodolfo, Teta, Alessandro},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {blow-up; moment of inertia; explicit blow-up solutions; nonlinear Schrödinger equation},
language = {eng},
number = {1},
pages = {121-137},
publisher = {Elsevier},
title = {Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity},
url = {http://eudml.org/doc/78609},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Adami, Riccardo
AU - Dell'Antonio, Gianfausto
AU - Figari, Rodolfo
AU - Teta, Alessandro
TI - Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 1
SP - 121
EP - 137
LA - eng
KW - blow-up; moment of inertia; explicit blow-up solutions; nonlinear Schrödinger equation
UR - http://eudml.org/doc/78609
ER -

References

top
  1. [1] R. Adami, G. Dell'Antonio, R. Figari, A. Teta, The Cauchy problem for the Schrödinger equation in dimension three with a concentrated nonlinearity, Preprint, Département de mathématiques et applications, École normale supérieure, DMA-02-09, Ann. Inst. H. Poincaré Anal. Non Linéaire, in press. Zbl1028.35137
  2. [2] Adami R, Teta A, A simple model of concentrated nonlinearity, Operator Theory Adv. Appl.108 (1999) 183-189. Zbl0967.81010MR1708796
  3. [3] Adami R, Teta A, A class of nonlinear Schrödinger equation with concentrated nonlinearity, J. Funct. Anal.180 (2001) 148-175. Zbl0979.35130MR1814425
  4. [4] Albeverio S, Gesztesy F, Högh-Krohn R, Holden H, Solvable Models in Quantum Mechanics, Springer-Verlag, New York, 1988. Zbl0679.46057MR926273
  5. [5] Cazenave T, An Introduction to Nonlinear Schrödinger Equation, Textos de Métodos Matematicos, vol. 26, IMUFRJ, Rio de Janeiro, 1993. 
  6. [6] Cazenave T, Blow-up and Scattering in the Nonlinear Schrödinger Equation, Textos de Métodos Matematicos, vol. 30, IMUFRJ, Rio de Janeiro, 1996. 
  7. [7] Ginibre J, Velo G, On a class of nonlinear Schrödinger equations, I. The Cauchy problem, general case, J. Funct. Anal.32 (1979) 1-32. Zbl0396.35028MR533218
  8. [8] Kato T, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor.46 (1987) 113-129. Zbl0632.35038MR877998
  9. [9] Merle F, Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity, Comm. Math. Phys.129 (1990) 223-240. Zbl0707.35021MR1048692
  10. [10] Sayapova M.R, Yafaev D.R, The evolution operator for time-dependent potentials of zero radius, Proc. Steklov Inst. Math.2 (1984) 173-180. Zbl0599.35035MR720214
  11. [11] Weinstein M.I, NLSE and sharp interpolation estimates, Comm. Math. Phys.87 (1983) 567-576. Zbl0527.35023MR691044

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.