Pseudoholomorphic strips in symplectisations I : asymptotic behavior

Casim Abbas

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 2, page 139-185
  • ISSN: 0294-1449

How to cite

top

Abbas, Casim. "Pseudoholomorphic strips in symplectisations I : asymptotic behavior." Annales de l'I.H.P. Analyse non linéaire 21.2 (2004): 139-185. <http://eudml.org/doc/78614>.

@article{Abbas2004,
author = {Abbas, Casim},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {contact manifold; symplectisation; Legendrian knot; chord; pseudoholomorphic strip},
language = {eng},
number = {2},
pages = {139-185},
publisher = {Elsevier},
title = {Pseudoholomorphic strips in symplectisations I : asymptotic behavior},
url = {http://eudml.org/doc/78614},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Abbas, Casim
TI - Pseudoholomorphic strips in symplectisations I : asymptotic behavior
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 2
SP - 139
EP - 185
LA - eng
KW - contact manifold; symplectisation; Legendrian knot; chord; pseudoholomorphic strip
UR - http://eudml.org/doc/78614
ER -

References

top
  1. [1] C. Abbas, H. Hofer, Holomorphic curves and global questions in contact geometry, Birkhäuser, submitted for publication. 
  2. [2] Abbas C, Finite energy surfaces and the chord problem, Duke. Math. J.96 (2) (1999) 241-316. Zbl0953.53049MR1666550
  3. [3] Abbas C, A note on VI Arnold's chord conjecture, Int. Math. Res. Notices4 (1999) 217-222. Zbl0920.57005MR1677279
  4. [4] Abbas C, Pseudoholomorphic strips in symplectisations II: Fredholm theory and transversality, Comm. Pure Appl. Math. (2003), in press. Zbl1073.53104MR2007355
  5. [5] C. Abbas, Pseudoholomorphic strips in symplectisations III: Embedding properties and compactness, Preprint, 2003. MR2108375
  6. [6] C. Abbas, The chord problem and a new method of filling by pseudoholomorphic curves, Preprint, 2003. MR2037757
  7. [7] Ambrosetti, Benci, Long, A note on the existence of multiple brake orbits, Nonlin. Anal.21 (1993) 643-649. Zbl0811.70015MR1246284
  8. [8] Arnold V.I, First steps in symplectic topology, Russian Math. Surveys41 (1986) 1-21. Zbl0649.58010
  9. [9] Bolotin, Kozlov, Libration in systems with many degrees of fredoom, J. Appl. Math. Mech.42 (1978) 256-261. Zbl0497.70033MR622465
  10. [10] Eliashberg Y, Legendrian and transversal knots in tight contact three manifolds, in: Topological Methods in Modern Mathematics, Stony Brook, NY, 1991, Publish or Perish, Houston, TX, 1993, pp. 171-193. Zbl0809.53033MR1215964
  11. [11] Eliashberg Y, Givental A, Hofer H, An introduction to symplectic field theory, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal. (Special Volume, Part II) (2000) 560-673. Zbl0989.81114MR1826267
  12. [12] Hofer H, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math.114 (3) (1993) 515-563. Zbl0797.58023MR1244912
  13. [13] Hofer H, Wysocki K, Zehnder E, Properties of pseudoholomorphic curves in symplectisations I: Asymptotics, Ann. Inst. H. Poincare Anal. Nonlin.13 (1996) 337-379. Zbl0861.58018MR1395676
  14. [14] Hofer H, Wysocki K, Zehnder E, Properties of pseudoholomorphic curves in symplectisations IV: Asymptotics with degeneracies, in: Thomas C (Ed.), Contact and Symplectic Geometry, Publications of the Newton Institute, vol. 8, Cambridge University Press, 1996, pp. 78-117. Zbl0868.53043MR1432460
  15. [15] Hofer H, Zehnder E, Hamiltonian Dynamics and Symplectic Invariants, Birkhäuser, 1994. Zbl0837.58013MR1306732
  16. [16] T. Kato, Perturbation of linear operators, Springer. Zbl0836.47009
  17. [17] Mohnke K, Holomorphic disks and the chord conjecture, Ann. Math.154 (2001) 219-222. Zbl1007.53065MR1847594
  18. [18] E. Mora Donato, Pseudoholomorphic cylinders in symplectisations, PhD Thesis, Courant Institute of Mathematical Sciences, 2003. 
  19. [19] Robbin J, Salamon D, Asymptotic behavior of holomorphic strips, Ann. Inst. H. Poincare Anal. Nonlin. (2000). Zbl0999.53048MR1849689
  20. [20] Seifert, Periodische Bewegungen mechanischer systeme, Math. Z.51 (1948) 197-216. Zbl0030.22103MR25693
  21. [21] Van Groesen, Existence of multiple normal mode trajectories on convex energy surfaces of even classical Hamiltonian systems, J. Differential Equations57 (1985) 70-89. Zbl0519.70026MR788423
  22. [22] Weinstein A, Normal modes for non-linear Hamiltonian systems, Invent. Math.20 (1973) 47-57. Zbl0264.70020MR328222
  23. [23] Weinstein A, Symplectic manifolds and their Lagrangian submanifolds, Adv. Math.6 (1971) 329-346. Zbl0213.48203MR286137
  24. [24] Weinstein A, Lectures on Symplectic Manifolds, CBMS Conference Series, vol. 29, AMS, Providence, RI, 1977. Zbl0406.53031MR464312

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.