A minimization problem associated with elliptic systems of Fitz–Hugh–Nagumo type
Annales de l'I.H.P. Analyse non linéaire (2004)
- Volume: 21, Issue: 2, page 237-253
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDancer, E. N., and Yan, Shusen. "A minimization problem associated with elliptic systems of Fitz–Hugh–Nagumo type." Annales de l'I.H.P. Analyse non linéaire 21.2 (2004): 237-253. <http://eudml.org/doc/78617>.
@article{Dancer2004,
author = {Dancer, E. N., Yan, Shusen},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Elliptic systems; Multiple layer},
language = {eng},
number = {2},
pages = {237-253},
publisher = {Elsevier},
title = {A minimization problem associated with elliptic systems of Fitz–Hugh–Nagumo type},
url = {http://eudml.org/doc/78617},
volume = {21},
year = {2004},
}
TY - JOUR
AU - Dancer, E. N.
AU - Yan, Shusen
TI - A minimization problem associated with elliptic systems of Fitz–Hugh–Nagumo type
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 2
SP - 237
EP - 253
LA - eng
KW - Elliptic systems; Multiple layer
UR - http://eudml.org/doc/78617
ER -
References
top- [1] Alberti G., Ambrosio L., Cabré X., On a long-standing conjecture of E. De Giorgi: symmetry in 3d for general nonlinearities and a local minimality property, Acta Appl. Math.65 (2001) 9-33. Zbl1121.35312MR1843784
- [2] Ambrosio L., Cabré X., Entire solutions of semilinear elliptic equations in R3 and a conjecture of de Giorgi, J. Amer. Math. Soc.13 (2000) 725-739. Zbl0968.35041MR1775735
- [3] Berestycki H., Caffarelli L., Nirenberg L., Further qualitative properties for elliptic equations in unbounded domains, Ann Scuola Norm. Sup. Pisa C1. Sci.25 (1997) 69-94. Zbl1079.35513MR1655510
- [4] Brezis H., Opŕateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert, North-Holland, Amsterdam, 1973. Zbl0252.47055MR348562
- [5] Chafee N., A stability analysis for a semilinear parabolic partial differential equation, J. Differential Equations15 (1974) 522-540. Zbl0271.35043MR358042
- [6] Clément P., Peletier L.A., On a nonlinear eigenvalue problem occurring in population genetics, Proc. Royal Soc. Edinburgh Sect. A100 (1985) 85-101. Zbl0569.34021MR801846
- [7] Clément P., Sweers G., Existence and multiplicity results for a semilinear eigenvalue problem, Ann. Scuola Norm. Sup. Pisa14 (1987) 97-121. Zbl0662.35045MR937538
- [8] Dancer E.N., On the number of positive solutions of weakly non-linear elliptic equations when a parameter is large, Proc. London Math. Soc.53 (1986) 429-452. Zbl0572.35040MR868453
- [9] De Giorgi E., Convergence problems for functionals and operators, in: Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978, pp. 131-188. Zbl0405.49001MR533166
- [10] deFigueiredo D.G., Mitidieri E., A maximum principle for an elliptic system and applications to semilinear problems, SIAM J. Math. Anal.17 (1986) 836-849. Zbl0608.35022MR846392
- [11] Ghoussoub N., Gui C., On a conjecture of De Giorgi and some related problem, Math. Ann.311 (1998) 481-491. Zbl0918.35046MR1637919
- [12] Ghoussoub N., Gui C., On De Giorgi's conjecture in dimensions 4 and 5, Ann. Math.157 (2003) 313-334. Zbl1165.35367MR1954269
- [13] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [14] Klaasen G.A., Mitidieri E., Standing wave solutions for a system derived from the FitzHugh–Nagumo equation for nerve conduction, SIAM J. Math. Anal.17 (1986) 74-83. Zbl0593.35043MR819214
- [15] Klaasen G.A., Troy W.C., Stationary wave solutions of a system of reaction–diffusion equations derived from the FitzHugh–Nagumo equations, SIAM J. Appl. Math.44 (1984) 96-110. Zbl0543.35051MR730003
- [16] Lazer A.C., Mckenna P.J., On steady state solutions of a system of reaction–diffusion equations from biology, Nonlinear Anal.6 (1982) 523-530. Zbl0488.35039MR664014
- [17] Modica L., Gradient theory of phase transitions and minimal interface criteria, Arch. Rational Mech. Anal.98 (1987) 123-142. Zbl0616.76004MR866718
- [18] Reinecke C., Sweers G., A boundary layer solution to a semilinear elliptic system of FitzHugh–Nagumo type, C. R. Acad. Sci. Paris Sér. I. Math.329 (1999) 27-32. Zbl0931.35046MR1703287
- [19] Reinecke C., Sweers G., A positive solution on RN to s system of elliptic equations of FitzHugh–Nagumo type, J. Differential Equations153 (1999) 292-312. Zbl0929.35042MR1683624
- [20] Reinecke C., Sweers G., Existence and uniqueness of solutions on bounded domains to a FitzHugh–Nagumo type elliptic system, Pacific J. Math.197 (2001) 183-211. Zbl1066.35069MR1810215
- [21] Reinecke C., Sweers G., Solutions with internal jump for an autonomous elliptic system of FitzHugh–Nagumo type, Math. Nachr.251 (2003) 64-87. Zbl1118.35009MR1960805
- [22] Sternberg P., The effect of a singular perturbation on nonconvex variational problem, Arch. Rational Mech. Anal.101 (1988) 202-260. Zbl0647.49021MR930124
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.