Existence and multiplicity results for a semilinear elliptic eigenvalue problem

Philippe Clément; Guido Sweers

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1987)

  • Volume: 14, Issue: 1, page 97-121
  • ISSN: 0391-173X

How to cite

top

Clément, Philippe, and Sweers, Guido. "Existence and multiplicity results for a semilinear elliptic eigenvalue problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 14.1 (1987): 97-121. <http://eudml.org/doc/84001>.

@article{Clément1987,
author = {Clément, Philippe, Sweers, Guido},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {multiplicity; semilinear; asymptotic behaviour; existence; positive solutions; uniqueness},
language = {eng},
number = {1},
pages = {97-121},
publisher = {Scuola normale superiore},
title = {Existence and multiplicity results for a semilinear elliptic eigenvalue problem},
url = {http://eudml.org/doc/84001},
volume = {14},
year = {1987},
}

TY - JOUR
AU - Clément, Philippe
AU - Sweers, Guido
TI - Existence and multiplicity results for a semilinear elliptic eigenvalue problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1987
PB - Scuola normale superiore
VL - 14
IS - 1
SP - 97
EP - 121
LA - eng
KW - multiplicity; semilinear; asymptotic behaviour; existence; positive solutions; uniqueness
UR - http://eudml.org/doc/84001
ER -

References

top
  1. [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev.18 (1976), pp. 620-709. Zbl0345.47044MR415432
  2. [2] A. Ambrosetti, P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl.73 (1980), pp. 411-422. Zbl0433.35026MR563992
  3. [3] S.B. Angenent, Uniqueness of the solution of a semilinear boundary value problem, Math. Ann.272 (1985), pp. 129-138. Zbl0576.35044MR794096
  4. [4] H. Bérestycki, P.-L. Lions, Une méthode locale pour l'existence de solutions positives de problèmes semilinéaires elliptiques dans R N, J. Analyse Math.38 (1980), pp. 144-187. Zbl0518.35034MR600785
  5. [5] P. Clément, L.A. Peletier, Positive superharmonic solutions to semilinear elliptic eigenvalue problems, J. Math. Anal. Appl.100 (1984), pp. 561-582. Zbl0543.35038MR743342
  6. [6] P. Clément, G. Sweers, Existence et multiplicité des solutions d'un problème aux valeurs propres elliptiques semilinéaire, C.R. Acad Sci. Paris302, Série 1, 19 (1986), pp. 681-683. Zbl0606.35035MR847753
  7. [7] E.N. Dancer, Uniqueness for elliptic equations when a parameter is large, Nonlinear Anal. Theory, Methods and Appl.8 (1984), pp. 835-836. Zbl0526.35032
  8. [8] E.N. Dancer, On the number of positive solutions of weakly nonlinear elliptic equations when a parameter is large, to appear in Proc. London Math. Soc. Zbl0572.35040MR868453
  9. [9] E.N. Dancer, Multiple fixed points of positive mappings, Preprint (1985). Zbl0597.47034MR859319
  10. [10] D. De Figueiredo, On the uniqueness of positive solutions of the Dirichlet problem —Δu = λ sin u, Nonlinear P.D.E. and Appl. Collège de France Seminar Vol. 7, Pitman (1985), pp. 80-83. Zbl0569.35037
  11. [11] R. Gardner, L.A. Peletier, The set of positive solutions of semilinear equations in large balls, to appear. Zbl0625.35030MR877892
  12. [12] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979), pp. 209-243. Zbl0425.35020MR544879
  13. [13] P. Hess, On multiple solutions of nonlinear. elliptic eigenvalue problems, Comm. Partial Differential Equations6 (1981), pp. 951-961. Zbl0468.35073MR619753
  14. [14] P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev.24 (1982), pp. 441-467. Zbl0511.35033MR678562
  15. [15] W.M. Ni, J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case, Univ. of Minnesota Math. Rep. (1984), pp. 84-150. 
  16. [16] L. Nirenberg, Topics in nonlinear functional analysis, Lecture Notes Courant Inst. of Math. Sci, New York Univ. (1974). Zbl0286.47037MR488102
  17. [17] S.I. Pohozaev, Eigenfunctions of the equations Δu + λf (u) = 0, Soviet Math. Dokl., 6 (1965), pp. 1408-1411. Zbl0141.30202
  18. [18] M.H. Protter, H.F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, NJ (1967). Zbl0153.13602MR219861
  19. [19] P.H. Rabinowitz, Pairs of positive solutions of nonlinear elliptic partial differential equations, Indiana Univ. Math. J.23 (1973), pp. 172-185. Zbl0264.35032MR318667
  20. [20] P.H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math.3 (1973), pp. 161-202. Zbl0255.47069MR320850
  21. [21] D.H. Sattinger, Topics in stability and bifurcation theory, Lect. Notes in Math. 309, Springer, BerlinHeidelbergNew York (1973). Zbl0248.35003MR463624
  22. [22] J. Serrin, Nonlinear equations of second order, A.M.S. Sympos. Partial Differential Equations, Berkeley, August 1971. Zbl0271.35004
  23. [23] F. Trèves, Basic linear partial differential equations, Academic Press, New York (1975). Zbl0305.35001MR447753
  24. [24] E.N. Dancer, K. Schmitt, On positive solutions of semilinear elliptic equations, Preprint (1986). Zbl0661.35031MR908646

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.