Existence and multiplicity results for a semilinear elliptic eigenvalue problem
Philippe Clément; Guido Sweers
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1987)
- Volume: 14, Issue: 1, page 97-121
- ISSN: 0391-173X
Access Full Article
topHow to cite
topClément, Philippe, and Sweers, Guido. "Existence and multiplicity results for a semilinear elliptic eigenvalue problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 14.1 (1987): 97-121. <http://eudml.org/doc/84001>.
@article{Clément1987,
author = {Clément, Philippe, Sweers, Guido},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {multiplicity; semilinear; asymptotic behaviour; existence; positive solutions; uniqueness},
language = {eng},
number = {1},
pages = {97-121},
publisher = {Scuola normale superiore},
title = {Existence and multiplicity results for a semilinear elliptic eigenvalue problem},
url = {http://eudml.org/doc/84001},
volume = {14},
year = {1987},
}
TY - JOUR
AU - Clément, Philippe
AU - Sweers, Guido
TI - Existence and multiplicity results for a semilinear elliptic eigenvalue problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1987
PB - Scuola normale superiore
VL - 14
IS - 1
SP - 97
EP - 121
LA - eng
KW - multiplicity; semilinear; asymptotic behaviour; existence; positive solutions; uniqueness
UR - http://eudml.org/doc/84001
ER -
References
top- [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev.18 (1976), pp. 620-709. Zbl0345.47044MR415432
- [2] A. Ambrosetti, P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl.73 (1980), pp. 411-422. Zbl0433.35026MR563992
- [3] S.B. Angenent, Uniqueness of the solution of a semilinear boundary value problem, Math. Ann.272 (1985), pp. 129-138. Zbl0576.35044MR794096
- [4] H. Bérestycki, P.-L. Lions, Une méthode locale pour l'existence de solutions positives de problèmes semilinéaires elliptiques dans R N, J. Analyse Math.38 (1980), pp. 144-187. Zbl0518.35034MR600785
- [5] P. Clément, L.A. Peletier, Positive superharmonic solutions to semilinear elliptic eigenvalue problems, J. Math. Anal. Appl.100 (1984), pp. 561-582. Zbl0543.35038MR743342
- [6] P. Clément, G. Sweers, Existence et multiplicité des solutions d'un problème aux valeurs propres elliptiques semilinéaire, C.R. Acad Sci. Paris302, Série 1, 19 (1986), pp. 681-683. Zbl0606.35035MR847753
- [7] E.N. Dancer, Uniqueness for elliptic equations when a parameter is large, Nonlinear Anal. Theory, Methods and Appl.8 (1984), pp. 835-836. Zbl0526.35032
- [8] E.N. Dancer, On the number of positive solutions of weakly nonlinear elliptic equations when a parameter is large, to appear in Proc. London Math. Soc. Zbl0572.35040MR868453
- [9] E.N. Dancer, Multiple fixed points of positive mappings, Preprint (1985). Zbl0597.47034MR859319
- [10] D. De Figueiredo, On the uniqueness of positive solutions of the Dirichlet problem —Δu = λ sin u, Nonlinear P.D.E. and Appl. Collège de France Seminar Vol. 7, Pitman (1985), pp. 80-83. Zbl0569.35037
- [11] R. Gardner, L.A. Peletier, The set of positive solutions of semilinear equations in large balls, to appear. Zbl0625.35030MR877892
- [12] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979), pp. 209-243. Zbl0425.35020MR544879
- [13] P. Hess, On multiple solutions of nonlinear. elliptic eigenvalue problems, Comm. Partial Differential Equations6 (1981), pp. 951-961. Zbl0468.35073MR619753
- [14] P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev.24 (1982), pp. 441-467. Zbl0511.35033MR678562
- [15] W.M. Ni, J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case, Univ. of Minnesota Math. Rep. (1984), pp. 84-150.
- [16] L. Nirenberg, Topics in nonlinear functional analysis, Lecture Notes Courant Inst. of Math. Sci, New York Univ. (1974). Zbl0286.47037MR488102
- [17] S.I. Pohozaev, Eigenfunctions of the equations Δu + λf (u) = 0, Soviet Math. Dokl., 6 (1965), pp. 1408-1411. Zbl0141.30202
- [18] M.H. Protter, H.F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, NJ (1967). Zbl0153.13602MR219861
- [19] P.H. Rabinowitz, Pairs of positive solutions of nonlinear elliptic partial differential equations, Indiana Univ. Math. J.23 (1973), pp. 172-185. Zbl0264.35032MR318667
- [20] P.H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math.3 (1973), pp. 161-202. Zbl0255.47069MR320850
- [21] D.H. Sattinger, Topics in stability and bifurcation theory, Lect. Notes in Math. 309, Springer, BerlinHeidelbergNew York (1973). Zbl0248.35003MR463624
- [22] J. Serrin, Nonlinear equations of second order, A.M.S. Sympos. Partial Differential Equations, Berkeley, August 1971. Zbl0271.35004
- [23] F. Trèves, Basic linear partial differential equations, Academic Press, New York (1975). Zbl0305.35001MR447753
- [24] E.N. Dancer, K. Schmitt, On positive solutions of semilinear elliptic equations, Preprint (1986). Zbl0661.35031MR908646
Citations in EuDML Documents
top- E. N. Dancer, Shusen Yan, A minimization problem associated with elliptic systems of Fitz–Hugh–Nagumo type
- Henri Berestycki, Luis Caffarelli, Louis Nirenberg, Further qualitative properties for elliptic equations in unbounded domains
- Edward Norman Dancer, Shusen Yan, Peak solutions for an elliptic system of FitzHugh-Nagumo type
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.