Further qualitative properties for elliptic equations in unbounded domains

Henri Berestycki; Luis Caffarelli; Louis Nirenberg

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 25, Issue: 1-2, page 69-94
  • ISSN: 0391-173X

How to cite


Berestycki, Henri, Caffarelli, Luis, and Nirenberg, Louis. "Further qualitative properties for elliptic equations in unbounded domains." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.1-2 (1997): 69-94. <http://eudml.org/doc/84296>.

author = {Berestycki, Henri, Caffarelli, Luis, Nirenberg, Louis},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1-2},
pages = {69-94},
publisher = {Scuola normale superiore},
title = {Further qualitative properties for elliptic equations in unbounded domains},
url = {http://eudml.org/doc/84296},
volume = {25},
year = {1997},

AU - Berestycki, Henri
AU - Caffarelli, Luis
AU - Nirenberg, Louis
TI - Further qualitative properties for elliptic equations in unbounded domains
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 1-2
SP - 69
EP - 94
LA - eng
UR - http://eudml.org/doc/84296
ER -


  1. [1] S.B. Angenent, Uniqueness of the solution of a semilinear boundary value problem, Math. Ann.272 (1985), 129-138. Zbl0576.35044MR794096
  2. [2] H. Berestycki - L. Nirenberg, On the method of moving planes and the sliding method, Boletim Soc. Brasil. de Mat. Nova Ser.22 (1991), 1-37. Zbl0784.35025MR1159383
  3. [3] H. Berestycki - L. Caffarelli - L. Nirenberg, Symmetry for Elliptic Equations in a Halfspace, in "Boundary value problems for partial differential equations and applications", volume dedicated to E. Magenes, J. L. Lions et al., ed., Masson, Paris (1993), 27-42. Zbl0793.35034MR1260436
  4. [4] H. Berestycki - L. Caffarelli - L. Nirenberg, Monotonicity for elliptic equations in an unbounded Lipschitz domain, Comm. Pure Appl. Math.50 (1997), 1089-1112. Zbl0906.35035MR1470317
  5. [5] H. Berestycki - L. Caffarelli - L. Nirenberg, Inequalities for second order elliptic equations with applications to unbounded domains I, Duke Math. J.81 (1996), 467-494. Zbl0860.35004MR1395408
  6. [6] H. Berestycki - L. Nirenberg - S.R.S. Varadhan, The principal eigenvalue and maximum principle for second order elliptic operators in general domains, Comm. Pure Applied Math.47 (1994), 47-92. Zbl0806.35129MR1258192
  7. [7] J. Busca, Existence Results for Bellman Equations and Maximum Principles in Unbounded Domains, preprint. Zbl0961.35021MR1720774
  8. [8] L. Caffarelli - N. Garofalo - F. Segala, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math.47 (1994), 1457-1473. Zbl0819.35016MR1296785
  9. [9] PH. Clément - G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Annali di Pisa, Ser. 414 (1987), 97-121. Zbl0662.35045MR937538
  10. [10] E.N. Dancer, Some notes on the method of moving planes, Bull. Australian Math. Soc.46 (1992), 425-434. Zbl0777.35005MR1190345
  11. [11] E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Natur. (3) 3 (1957), 25-43. Zbl0084.31901MR93649
  12. [12] E. De Giorgi, Convergence Problems for Functionals and Operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, E. De Giorgi, E. Magenes and U. Mosco eds., Pitagora Ed., Bologna (1979), 131-188 Zbl0405.49001MR533166
  13. [13] M. Esteban - P.L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Royal Soc. EdinburghA93 (1982), 1-14. Zbl0506.35035MR688279
  14. [14] N. Ghoussoub - C. Gui, On a Conjecture of De Giorgi and some Related Problems, preprint. MR1637919
  15. [15] B. Gidas - W.M. Ni - L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979), 209-243. Zbl0425.35020MR544879
  16. [16] D. Gilbarg - S.N. Trudinger, "Elliptic Partial Differential Equations of Second Order", 2nd ed., Springer Verlag, 1983. Zbl0562.35001MR737190
  17. [17] L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math.38 (1985), 679-684. Zbl0612.35051MR803255
  18. [18] L. Modica - S. Mortola, Some entire solutions in the plane of nonlinear Poisson equations, Bollettino U.M.I.B5-17 (1980), 614-622. Zbl0448.35044MR580544
  19. [19] J. Moser, On Harnack's theorem for elliptic differental equations, Comm. Pure Appl. Math.14 (1961), 577-591. Zbl0111.09302MR159138
  20. [20] M.H. Protter - H.F. Weinberger, "Maximum Principles in Differential Equations", Prentice-Hall, Englewood Cliffs, New Jersey, 1967. Zbl0153.13602MR219861
  21. [21] H. Tehrani, Doctoral Thesis, Courant Institute, 1994. 

Citations in EuDML Documents

  1. E. N. Dancer, Shusen Yan, A minimization problem associated with elliptic systems of Fitz–Hugh–Nagumo type
  2. Luisa Moschini, New Liouville theorems for linear second order degenerate elliptic equations in divergence form
  3. Alberto Farina, Simmetria delle soluzioni di equazioni ellittiche semilineari in R N
  4. Luís Almeida, Lucio Damascelli, Yuxin Ge, A few symmetry results for nonlinear elliptic PDE on noncompact manifolds
  5. Alberto Farina, Berardino Sciunzi, Enrico Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach
  6. Jean Dolbeault, Régis Monneau, On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.