Regularity for degenerate elliptic problems via p-harmonic approximation
Frank Duzaar; Giuseppe Mingione
Annales de l'I.H.P. Analyse non linéaire (2004)
- Volume: 21, Issue: 5, page 735-766
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDuzaar, Frank, and Mingione, Giuseppe. "Regularity for degenerate elliptic problems via p-harmonic approximation." Annales de l'I.H.P. Analyse non linéaire 21.5 (2004): 735-766. <http://eudml.org/doc/78637>.
@article{Duzaar2004,
author = {Duzaar, Frank, Mingione, Giuseppe},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {-Laplacian; Partial regularity; Quasi-convexity},
language = {eng},
number = {5},
pages = {735-766},
publisher = {Elsevier},
title = {Regularity for degenerate elliptic problems via p-harmonic approximation},
url = {http://eudml.org/doc/78637},
volume = {21},
year = {2004},
}
TY - JOUR
AU - Duzaar, Frank
AU - Mingione, Giuseppe
TI - Regularity for degenerate elliptic problems via p-harmonic approximation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 5
SP - 735
EP - 766
LA - eng
KW - -Laplacian; Partial regularity; Quasi-convexity
UR - http://eudml.org/doc/78637
ER -
References
top- [1] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
- [2] Acerbi E., Fusco N., A regularity theorem for minimizers of quasiconvex integrals, Arch. Ration. Mech. Anal.99 (1987) 261-281. Zbl0627.49007MR888453
- [3] Acerbi E., Fusco N., Regularity for minimizers of non-quadratic functionals: the case 1<p<2, J. Math. Anal. Appl.140 (1989) 115-135. Zbl0686.49004MR997847
- [4] Acerbi E., Mingione G., Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal.164 (2002) 213-259. Zbl1038.76058MR1930392
- [5] Carozza M., Fusco N., Mingione G., Partial regularity of minimizers of quasiconvex integrals with subquadratic growth, Ann. Mat. Pura Appl. IV175 (1998) 141-164. Zbl0960.49025MR1748219
- [6] Duzaar F., Gastel A., Grotowski J., Partial regularity for almost minimizers of quasiconvex functionals, SIAM J. Math. Anal.32 (2000) 665-687. Zbl0989.49026MR1786163
- [7] Duzaar F., Grotowski J., Optimal interior partial regularity for nonlinear elliptic systems: the method of A-harmonic approximation, Manuscripta Math.103 (2000) 267-298. Zbl0971.35025MR1802484
- [8] F. Duzaar, J. Grotowski, M. Kronz, Regularity of almost minimizers of quasi-convex integrals with subquadratic growth, Ann. Mat. Pura Appl., 2004, in press. Zbl1223.49040
- [9] F. Duzaar, G. Mingione, The p-harmonic approximation and the regularity of p-harmonic maps, Calc. Var., 2004, in press. Zbl1142.35433MR2062943
- [10] Duzaar F., Steffen K., Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J. Reine Angew. Math.546 (2002) 73-138. Zbl0999.49024MR1900994
- [11] Evans L.C., Quasiconvexitity and partial regularity in the calculus of variations, Arch. Ration. Mech. Anal.95 (1986) 227-252. Zbl0627.49006MR853966
- [12] Fusco N., Hutchinson J.E., Partial regularity for minimisers of certain functionals having nonquadratic growth, Ann. Mat. Pura Appl. IV155 (1989) 1-24. Zbl0698.49001MR1042826
- [13] Giusti E., Miranda M., Sulla regolaritá delle soluzioni deboli di una classe di sistemi ellittici quasi-lineari, Arch. Ration. Mech. Anal.31 (1968/1969) 173-184. Zbl0167.10703MR235264
- [14] Grotowski J.F., Boundary regularity for nonlinear elliptic systems, Calc. Var.15 (2002) 353-388. Zbl1148.35315MR1938819
- [15] Hamburger C., Regularity of differential forms minimizing degenerate elliptic functionals, J. Reine Angew. Math.431 (1992) 7-64. Zbl0776.35006MR1179331
- [16] Kronz M., Partial regularity results for minimizers of quasiconvex functionals of higher order, Ann. Inst. Henri Poincaré, Analyse non linéaire19 (2002) 81-112. Zbl1010.49023MR1902546
- [17] Morrey C.B., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math.2 (1952) 25-53. Zbl0046.10803MR54865
- [18] Morrey C.B., Partial regularity results for non-linear elliptic systems, J. Math. Mech.17 (1967/1968) 649-670. Zbl0175.11901MR237947
- [19] Simon L., Lectures on Geometric Measure Theory, Proc. CMA, vol. 3, ANU Canberra, 1983. Zbl0546.49019MR756417
- [20] Simon L., Theorems on Regularity and Singularity of Energy Minimizing Maps, Birkhäuser-Verlag, Basel, 1996. Zbl0864.58015MR1399562
- [21] Šveràk V., Quasiconvex functions with subquadratic growth, Proc. Roy. Soc. London Ser. A433 (1991) 723-725. Zbl0741.49016MR1116970
Citations in EuDML Documents
top- Jialin Wang, Dongni Liao, Zefeng Yu, Hölder continuity for sub-elliptic systems under the sub-quadratic controllable growth in Carnot groups
- Mikil Foss, Giuseppe Mingione, Partial continuity for elliptic problems
- Frank Duzaar, Giuseppe Mingione, Second order parabolic systems, optimal regularity, and singular sets of solutions
- Giuseppe Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.