Partial regularity results for minimizers of quasiconvex functionals of higher order

Manfred Kronz

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 1, page 81-112
  • ISSN: 0294-1449

How to cite

top

Kronz, Manfred. "Partial regularity results for minimizers of quasiconvex functionals of higher order." Annales de l'I.H.P. Analyse non linéaire 19.1 (2002): 81-112. <http://eudml.org/doc/78540>.

@article{Kronz2002,
author = {Kronz, Manfred},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {partial regularity; quasiconvexity; minimizers; quasiconvex functionals},
language = {eng},
number = {1},
pages = {81-112},
publisher = {Elsevier},
title = {Partial regularity results for minimizers of quasiconvex functionals of higher order},
url = {http://eudml.org/doc/78540},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Kronz, Manfred
TI - Partial regularity results for minimizers of quasiconvex functionals of higher order
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 1
SP - 81
EP - 112
LA - eng
KW - partial regularity; quasiconvexity; minimizers; quasiconvex functionals
UR - http://eudml.org/doc/78540
ER -

References

top
  1. [1] Acerbi E., Fusco N., Semicontinuity of problems in the calculus of variations, Arch. Rat. Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
  2. [2] Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal.63 (1977) 337-403. Zbl0368.73040MR475169
  3. [3] Campanato S., Proprietà di una famiglia di spazi funzionali, Ann. Scoula Norm. Sup. Pisa18 (1964) 137-160. Zbl0133.06801MR167862
  4. [4] Campanato S., Teoremi di interpolazione per tranformazioni che applicano Lp in Ch,α, Ann. Scoula Norm. Sup. Pisa18 (1964) 345-360. Zbl0135.35102
  5. [5] Campanato S., Equazioni ellitichi del IIe ordine e spazi L2,λ, Ann. Mat. Pura Appl.69 (1965) 321-381. Zbl0145.36603
  6. [6] Campanato S., Alcune osservazioni relative alle soluzioni di equazioni ellittiche di ordine 2m, in: Atti Convegno Equaz. Der. Parz., Bologna, 1967, pp. 17-25. MR264207
  7. [7] Dacorogna B., Direct Methods in the Calculus of Variations, Springer, Berlin, 1989. Zbl0703.49001MR990890
  8. [8] Duzaar F., Steffen K., Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, preprint. Zbl0999.49024MR1900994
  9. [9] Evans L.C., Quasiconvexitity and partial regularity in the calculus of variations, Arch. Rat. Mech. Anal.95 (1986) 227-252. Zbl0627.49006MR853966
  10. [10] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992. Zbl0804.28001MR1158660
  11. [11] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, 1983. Zbl0516.49003MR717034
  12. [12] Giaquinta M., Introduction to Regularity Theory for Nonlinear Elliptic Systems, Birkhäuser, Basel, 1993. Zbl0786.35001MR1239172
  13. [13] Giaquinta M., Modica G., Regularity results for some classes of higher order nonlinear elliptic systems, J. Reine Angew. Math.311 (1979) 145-169. Zbl0409.35015MR549962
  14. [14] Giaquinta M., Modica G., Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. Henri Poincaré, Analyse non Linéaire3 (1986) 185-208. Zbl0594.49004MR847306
  15. [15] Guidorzi M., Poggiolini L., Lower semicontinuity of quasiconvex integrals of higher order, Nonlinear Differ. Equations Appl.6 (1999) 227-246. Zbl0930.35059MR1691445
  16. [16] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983. Zbl1042.35002MR737190
  17. [17] Marcellini P., Approximation of quasiconvex functions and lower semicontinuity of multiple integrals, Manuscripta Math.51 (1985) 1-28. Zbl0573.49010MR788671
  18. [18] Meyers N.G., Quasi-convexity and lower semi-continuity of multiple variational integrals of any order, Trans. Amer. Math. Soc.119 (1965) 125-149. Zbl0166.38501MR188838
  19. [19] Morrey C.B., Quasiconvexity and the lower semicontinuity of multiple integrals, Pacific J. Math.2 (1952) 25-53. Zbl0046.10803MR54865
  20. [20] Simon L., Lectures on Geometric Measure Theory, Australian National University Press, 1983. Zbl0546.49019MR756417
  21. [21] Simon L., Theorems on Regularity and Singularity of Energy Minimizing Maps, Birkhäuser, Basel, 1996. Zbl0864.58015MR1399562
  22. [22] Zhou X.P., Weak lower semicontinuity of a functional with any order, J. Math. Anal. Appl.221 (1998) 217-237. Zbl0919.49011MR1619142

Citations in EuDML Documents

top
  1. Frank Duzaar, Giuseppe Mingione, Regularity for degenerate elliptic problems via p-harmonic approximation
  2. Mikil Foss, Giuseppe Mingione, Partial continuity for elliptic problems
  3. Manfred Kronz, Quasimonotone systems of higher order
  4. Menita Carozza, Antonia Passarelli di Napoli, Partial regularity for anisotropic functionals of higher order
  5. Sabine Schemm, Partial regularity of minimizers of higher order integrals with (, )-growth
  6. Sabine Schemm, Partial regularity of minimizers of higher order integrals with (, )-growth
  7. Frank Duzaar, Giuseppe Mingione, Second order parabolic systems, optimal regularity, and singular sets of solutions

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.