Partial continuity for elliptic problems

Mikil Foss; Giuseppe Mingione

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 3, page 471-503
  • ISSN: 0294-1449

How to cite

top

Foss, Mikil, and Mingione, Giuseppe. "Partial continuity for elliptic problems." Annales de l'I.H.P. Analyse non linéaire 25.3 (2008): 471-503. <http://eudml.org/doc/78798>.

@article{Foss2008,
author = {Foss, Mikil, Mingione, Giuseppe},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {partial regularity; elliptic systems; quasiconvexity},
language = {eng},
number = {3},
pages = {471-503},
publisher = {Elsevier},
title = {Partial continuity for elliptic problems},
url = {http://eudml.org/doc/78798},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Foss, Mikil
AU - Mingione, Giuseppe
TI - Partial continuity for elliptic problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 3
SP - 471
EP - 503
LA - eng
KW - partial regularity; elliptic systems; quasiconvexity
UR - http://eudml.org/doc/78798
ER -

References

top
  1. [1] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
  2. [2] Acerbi E., Fusco N., A regularity theorem for minimizers of quasiconvex integrals, Arch. Ration. Mech. Anal.99 (1987) 261-281. Zbl0627.49007MR888453
  3. [3] Ball J., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal.63 (1976/77) 337-403. Zbl0368.73040MR475169
  4. [4] Campanato S., Hölder continuity and partial Hölder continuity results for H 1 , q -solutions of nonlinear elliptic systems with controlled growth, Rend. Sem. Mat. Fis. Milano52 (1982) 435-472. Zbl0576.35041MR802957
  5. [5] Campanato S., Hölder continuity of the solutions of some non-linear elliptic systems, Adv. Math.48 (1983) 16-43. Zbl0519.35027MR697613
  6. [6] Campanato S., On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions, Ann. Mat. Pura Appl. (4)137 (1984) 83-122. Zbl0704.35024MR772253
  7. [7] Campanato S., A few recent results for differential systems under monotonicity conditions, Boll. Un. Mat. Ital. A (7)2 (1988) 27-57. Zbl0662.35039MR931643
  8. [8] Cupini G., Fusco N., Petti R., Hölder continuity of local minimizers, J. Math. Anal. Appl.235 (1999) 578-597. Zbl0949.49022MR1703712
  9. [9] Duzaar F., Gastel A., Nonlinear elliptic systems with Dini continuous coefficients, Arch. Math. (Basel)78 (2002) 58-73. Zbl1013.35028MR1887317
  10. [10] Duzaar F., Gastel A., Grotowski J.F., Partial regularity for almost minimizers of quasi-convex integrals, SIAM J. Math. Anal.32 (2000) 665-687. Zbl0989.49026MR1786163
  11. [11] Duzaar F., Grotowski J.F., Optimal interior partial regularity for nonlinear elliptic systems: the method of A-harmonic approximation, Manuscripta Math.103 (2000) 267-298. Zbl0971.35025MR1802484
  12. [12] Duzaar F., Kronz M., Regularity of ω-minimizers of quasi-convex variational integrals with polynomial growth, Differential Geom. Appl.17 (2002) 139-152. Zbl1021.49026MR1925762
  13. [13] Duzaar F., Mingione G., Regularity for degenerate elliptic problems via p-harmonic approximation, Ann. Inst. H. Poincaré Anal. Non Linèaire21 (2004) 735-766. Zbl1112.35078MR2086757
  14. [14] Duzaar F., Steffen K., Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J. Reine Angew. Math. (Crelles J.)546 (2002) 73-138. Zbl0999.49024MR1900994
  15. [15] Evans L.C., Quasiconvexity and partial regularity in the calculus of variations, Arch. Ration. Mech. Anal.95 (1986) 227-252. Zbl0627.49006MR853966
  16. [16] Fonseca I., Fusco N., Regularity results for anisotropic image segmentation models, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)24 (1997) 463-499. Zbl0899.49018MR1612389
  17. [17] M. Foss, Global regularity for almost minimizers of nonconvex variational problems, Ann. Mat. Pura e Appl. (4), in press, doi:10.1007/s10231-007-0045-2. Zbl1223.49041
  18. [18] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983. Zbl0516.49003MR717034
  19. [19] Giaquinta M., Modica G., Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire3 (1986) 185-208. Zbl0594.49004MR847306
  20. [20] Giusti E., Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. Zbl1028.49001MR1962933
  21. [21] J. Habermann, A. Zatorska-Goldstein, Regularity for minimizers of functionals with nonstandard growth by A-harmonic approximation, Preprint, 2006. Zbl1183.49038MR2408350
  22. [22] Hildebrandt S., Widman K.O., Some regularity results for quasilinear elliptic systems of second order, Math. Z.142 (1975) 67-86. Zbl0317.35040MR377273
  23. [23] Kristensen J., Mingione G., The singular set of minima of integral functionals, Arch. Ration. Mech. Anal.180 (2006) 331-398. Zbl1116.49010MR2214961
  24. [24] Kronz M., Partial regularity results for minimizers of quasiconvex functionals of higher order, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 81-112. Zbl1010.49023MR1902546
  25. [25] Manfredi J.J., Regularity for minima of functionals with p-growth, J. Differential Equations76 (1988) 203-212. Zbl0674.35008MR969420
  26. [26] J.J. Manfredi, Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations, Ph.D. Thesis. University of Washington, St. Louis. 
  27. [27] Mingione G., Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math.51 (2006) 355-425. Zbl1164.49324MR2291779
  28. [28] Morrey C.B., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math.2 (1952) 25-53. Zbl0046.10803MR54865
  29. [29] Müller S., Variational models for microstructure and phase transitions, in: Calculus of Variations and Geometric Evolution Problems, Cetraro, 1996, Lecture Notes in Math., vol. 1713, Springer, 1999, pp. 85-210. Zbl0968.74050MR1731640
  30. [30] Rivière T., Everywhere discontinuous harmonic maps into spheres, Acta Math.175 (1995) 197-226. Zbl0898.58011MR1368247
  31. [31] Šverák V., Yan X., Non-Lipschitz minimizers of smooth uniformly convex variational integrals, Proc. Natl. Acad. Sci. USA99/24 (2002) 15269-15276. Zbl1106.49046MR1946762
  32. [32] Wolf J., Partial regularity of weak solutions to nonlinear elliptic systems satisfying a Dini condition, Z. Anal. Anwend.20 (2001) 315-330. Zbl1163.35329MR1846604

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.