Partial continuity for elliptic problems
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 3, page 471-503
- ISSN: 0294-1449
Access Full Article
topHow to cite
topFoss, Mikil, and Mingione, Giuseppe. "Partial continuity for elliptic problems." Annales de l'I.H.P. Analyse non linéaire 25.3 (2008): 471-503. <http://eudml.org/doc/78798>.
@article{Foss2008,
author = {Foss, Mikil, Mingione, Giuseppe},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {partial regularity; elliptic systems; quasiconvexity},
language = {eng},
number = {3},
pages = {471-503},
publisher = {Elsevier},
title = {Partial continuity for elliptic problems},
url = {http://eudml.org/doc/78798},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Foss, Mikil
AU - Mingione, Giuseppe
TI - Partial continuity for elliptic problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 3
SP - 471
EP - 503
LA - eng
KW - partial regularity; elliptic systems; quasiconvexity
UR - http://eudml.org/doc/78798
ER -
References
top- [1] Acerbi E., Fusco N., Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal.86 (1984) 125-145. Zbl0565.49010MR751305
- [2] Acerbi E., Fusco N., A regularity theorem for minimizers of quasiconvex integrals, Arch. Ration. Mech. Anal.99 (1987) 261-281. Zbl0627.49007MR888453
- [3] Ball J., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal.63 (1976/77) 337-403. Zbl0368.73040MR475169
- [4] Campanato S., Hölder continuity and partial Hölder continuity results for -solutions of nonlinear elliptic systems with controlled growth, Rend. Sem. Mat. Fis. Milano52 (1982) 435-472. Zbl0576.35041MR802957
- [5] Campanato S., Hölder continuity of the solutions of some non-linear elliptic systems, Adv. Math.48 (1983) 16-43. Zbl0519.35027MR697613
- [6] Campanato S., On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions, Ann. Mat. Pura Appl. (4)137 (1984) 83-122. Zbl0704.35024MR772253
- [7] Campanato S., A few recent results for differential systems under monotonicity conditions, Boll. Un. Mat. Ital. A (7)2 (1988) 27-57. Zbl0662.35039MR931643
- [8] Cupini G., Fusco N., Petti R., Hölder continuity of local minimizers, J. Math. Anal. Appl.235 (1999) 578-597. Zbl0949.49022MR1703712
- [9] Duzaar F., Gastel A., Nonlinear elliptic systems with Dini continuous coefficients, Arch. Math. (Basel)78 (2002) 58-73. Zbl1013.35028MR1887317
- [10] Duzaar F., Gastel A., Grotowski J.F., Partial regularity for almost minimizers of quasi-convex integrals, SIAM J. Math. Anal.32 (2000) 665-687. Zbl0989.49026MR1786163
- [11] Duzaar F., Grotowski J.F., Optimal interior partial regularity for nonlinear elliptic systems: the method of A-harmonic approximation, Manuscripta Math.103 (2000) 267-298. Zbl0971.35025MR1802484
- [12] Duzaar F., Kronz M., Regularity of ω-minimizers of quasi-convex variational integrals with polynomial growth, Differential Geom. Appl.17 (2002) 139-152. Zbl1021.49026MR1925762
- [13] Duzaar F., Mingione G., Regularity for degenerate elliptic problems via p-harmonic approximation, Ann. Inst. H. Poincaré Anal. Non Linèaire21 (2004) 735-766. Zbl1112.35078MR2086757
- [14] Duzaar F., Steffen K., Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J. Reine Angew. Math. (Crelles J.)546 (2002) 73-138. Zbl0999.49024MR1900994
- [15] Evans L.C., Quasiconvexity and partial regularity in the calculus of variations, Arch. Ration. Mech. Anal.95 (1986) 227-252. Zbl0627.49006MR853966
- [16] Fonseca I., Fusco N., Regularity results for anisotropic image segmentation models, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)24 (1997) 463-499. Zbl0899.49018MR1612389
- [17] M. Foss, Global regularity for almost minimizers of nonconvex variational problems, Ann. Mat. Pura e Appl. (4), in press, doi:10.1007/s10231-007-0045-2. Zbl1223.49041
- [18] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983. Zbl0516.49003MR717034
- [19] Giaquinta M., Modica G., Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire3 (1986) 185-208. Zbl0594.49004MR847306
- [20] Giusti E., Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. Zbl1028.49001MR1962933
- [21] J. Habermann, A. Zatorska-Goldstein, Regularity for minimizers of functionals with nonstandard growth by A-harmonic approximation, Preprint, 2006. Zbl1183.49038MR2408350
- [22] Hildebrandt S., Widman K.O., Some regularity results for quasilinear elliptic systems of second order, Math. Z.142 (1975) 67-86. Zbl0317.35040MR377273
- [23] Kristensen J., Mingione G., The singular set of minima of integral functionals, Arch. Ration. Mech. Anal.180 (2006) 331-398. Zbl1116.49010MR2214961
- [24] Kronz M., Partial regularity results for minimizers of quasiconvex functionals of higher order, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 81-112. Zbl1010.49023MR1902546
- [25] Manfredi J.J., Regularity for minima of functionals with p-growth, J. Differential Equations76 (1988) 203-212. Zbl0674.35008MR969420
- [26] J.J. Manfredi, Regularity of the gradient for a class of nonlinear possibly degenerate elliptic equations, Ph.D. Thesis. University of Washington, St. Louis.
- [27] Mingione G., Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math.51 (2006) 355-425. Zbl1164.49324MR2291779
- [28] Morrey C.B., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math.2 (1952) 25-53. Zbl0046.10803MR54865
- [29] Müller S., Variational models for microstructure and phase transitions, in: Calculus of Variations and Geometric Evolution Problems, Cetraro, 1996, Lecture Notes in Math., vol. 1713, Springer, 1999, pp. 85-210. Zbl0968.74050MR1731640
- [30] Rivière T., Everywhere discontinuous harmonic maps into spheres, Acta Math.175 (1995) 197-226. Zbl0898.58011MR1368247
- [31] Šverák V., Yan X., Non-Lipschitz minimizers of smooth uniformly convex variational integrals, Proc. Natl. Acad. Sci. USA99/24 (2002) 15269-15276. Zbl1106.49046MR1946762
- [32] Wolf J., Partial regularity of weak solutions to nonlinear elliptic systems satisfying a Dini condition, Z. Anal. Anwend.20 (2001) 315-330. Zbl1163.35329MR1846604
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.