The relaxed energy for S 2 -valued maps and measurable weights

Vincent Millot

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 2, page 135-157
  • ISSN: 0294-1449

How to cite

top

Millot, Vincent. "The relaxed energy for ${S}^{2}$-valued maps and measurable weights." Annales de l'I.H.P. Analyse non linéaire 23.2 (2006): 135-157. <http://eudml.org/doc/78687>.

@article{Millot2006,
author = {Millot, Vincent},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {dipole removing technique; lower bound of energy},
language = {eng},
number = {2},
pages = {135-157},
publisher = {Elsevier},
title = {The relaxed energy for $\{S\}^\{2\}$-valued maps and measurable weights},
url = {http://eudml.org/doc/78687},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Millot, Vincent
TI - The relaxed energy for ${S}^{2}$-valued maps and measurable weights
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 2
SP - 135
EP - 157
LA - eng
KW - dipole removing technique; lower bound of energy
UR - http://eudml.org/doc/78687
ER -

References

top
  1. [1] Bethuel F., A characterization of maps in H 1 ( B 3 , S 2 ) which can be approximated by smooth maps, Ann. Inst. H. Poincaré Anal. Non Linéaire7 (1990) 269-286. Zbl0708.58004MR1067776
  2. [2] Bethuel F., The approximation problem for Sobolev maps between two manifolds, Acta Math.167 (1991) 153-206. Zbl0756.46017MR1120602
  3. [3] Bethuel F., Zheng X., Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal.80 (1988) 60-75. Zbl0657.46027MR960223
  4. [4] Bethuel F., Brezis H., Coron J.M., Relaxed energies for harmonic maps, in: Berestycki H., Coron J.M., Ekeland I. (Eds.), Variational Problems, Birkhäuser, 1990, pp. 37-52. Zbl0793.58011MR1205144
  5. [5] J. Bourgain, H. Brezis, P. Mironescu, H 1 / 2 -maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, Publ. Math. Inst. Hautes Etudes Sci., in press. Zbl1051.49030MR2075883
  6. [6] H. Brezis, Liquid crystals and energy estimates for S 2 -valued maps, in [11]. 
  7. [7] Brezis H., Coron J.M., Large solutions for harmonic maps in two dimensions, Comm. Math. Phys.92 (1983) 203-215. Zbl0532.58006MR728866
  8. [8] Brezis H., Coron J.M., Lieb E., Harmonics maps with defects, Comm. Math. Phys.107 (1986) 649-705. Zbl0608.58016MR868739
  9. [9] H. Brezis, P.M. Mironescu, A.C. Ponce, W 1 , 1 -maps with values into S 1 , in: S. Chanillo, P. Cordaro, N. Hanges, J. Hounie, A. Meziani (Eds.), Geometric Analysis of PDE Several Complex Variables, Contemp. Math., AMS, in press. Zbl1078.46020MR2127792
  10. [10] Dal Maso G., Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations Appl., vol. 8, Birkhäuser, 1993. Zbl0816.49001
  11. [11] Ericksen J., Kinderlehrer D. (Eds.), Theory and Applications of Liquid Crystals, IMA Ser., vol. 5, Springer, 1987. Zbl0713.76006MR900827
  12. [12] Giaquinta M., Modica G., Souček J., Cartesian Currents in the Calculus of Variations, Springer, 1998. Zbl0914.49001MR1645086
  13. [13] V. Millot, Energy with weight for S 2 -valued maps with prescribed singularities, Calculus of Variations and PDEs, in press. Zbl1115.49013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.