Stability of solitary waves for derivative nonlinear Schrödinger equation

Mathieu Colin; Masahito Ohta

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 5, page 753-764
  • ISSN: 0294-1449

How to cite

top

Colin, Mathieu, and Ohta, Masahito. "Stability of solitary waves for derivative nonlinear Schrödinger equation." Annales de l'I.H.P. Analyse non linéaire 23.5 (2006): 753-764. <http://eudml.org/doc/78710>.

@article{Colin2006,
author = {Colin, Mathieu, Ohta, Masahito},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {solitary wave; orbital stability; DNLS},
language = {eng},
number = {5},
pages = {753-764},
publisher = {Elsevier},
title = {Stability of solitary waves for derivative nonlinear Schrödinger equation},
url = {http://eudml.org/doc/78710},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Colin, Mathieu
AU - Ohta, Masahito
TI - Stability of solitary waves for derivative nonlinear Schrödinger equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 5
SP - 753
EP - 764
LA - eng
KW - solitary wave; orbital stability; DNLS
UR - http://eudml.org/doc/78710
ER -

References

top
  1. [1] Biagioni H.A., Linares F., Ill-posedness for the derivative Schrödinger and generalized Benjamin–Ono equations, Trans. Amer. Math. Soc.353 (2001) 3649-3659. Zbl0970.35154MR1837253
  2. [2] Berestycki H., Cazenave T., Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires, C. R. Acad. Sci. Paris293 (1981) 489-492. Zbl0492.35010MR646873
  3. [3] Brézis H., Lieb E.H., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc.88 (1983) 486-490. Zbl0526.46037MR699419
  4. [4] Cazenave T., Semilinear Schrödinger equations, Courant Lecture Notes Math., vol. 10, New York University, Courant Institute of Mathematical Sciences, American Mathematical Society, New York, Providence, RI, 2003. Zbl1055.35003MR2002047
  5. [5] Cazenave T., Lions P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys.85 (1982) 549-561. Zbl0513.35007MR677997
  6. [6] Fröhlich J., Lieb E.H., Loss M., Stability of Coulomb systems with magnetic fields I. The one-electron atom, Comm. Math. Phys.104 (1986) 251-270. Zbl0595.35098MR836003
  7. [7] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal.74 (1987) 160-197. Zbl0656.35122MR901236
  8. [8] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal.94 (1990) 308-348. Zbl0711.58013MR1081647
  9. [9] Guo Boling, Wu Yaping, Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation, J. Differential Equations123 (1995) 35-55. Zbl0844.35116MR1359911
  10. [10] Hayashi N., The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal.20 (1993) 823-833. Zbl0787.35099MR1214746
  11. [11] Hayashi N., Ozawa T., On the derivative nonlinear Schrödinger equation, Physica D55 (1992) 14-36. Zbl0741.35081MR1152001
  12. [12] Hayashi N., Ozawa T., Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal.25 (1994) 1488-1503. Zbl0809.35124MR1302158
  13. [13] Lieb E.H., On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math.74 (1983) 441-448. Zbl0538.35058MR724014
  14. [14] Mio W., Ogino T., Minami K., Takeda S., Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan41 (1976) 265-271. Zbl1334.76181MR462141
  15. [15] Mjølhus E., On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys.16 (1976) 321-334. 
  16. [16] Nawa H., Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity, J. Math. Soc. Japan46 (1994) 557-586. Zbl0829.35121MR1291107
  17. [17] Ohta M., Stability of standing waves for the generalized Davey–Stewartson system, J. Dynam. Differential Equations6 (1994) 325-334. Zbl0805.35098MR1280142
  18. [18] Ohta M., Stability and instability of standing waves for one-dimensional nonlinear Schrödinger equations with double power nonlinearity, Kodai Math. J.18 (1995) 68-74. Zbl0868.35111MR1317007
  19. [19] Ohta M., Stability and instability of standing waves for the generalized Davey–Stewartson system, Differential Integral Equations8 (1995) 1775-1788. Zbl0827.35122MR1347979
  20. [20] Ohta M., Blow-up solutions and strong instability of standing waves for the generalized Davey–Stewartson system in R 2 , Ann. Inst. H. Poincaré Phys. Théor.63 (1995) 111-117. Zbl0832.35132MR1354441
  21. [21] Ozawa T., On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J.45 (1996) 137-163. Zbl0859.35117MR1406687
  22. [22] Shatah J., Stable standing waves of nonlinear Klein–Gordon equations, Comm. Math. Phys.91 (1983) 313-327. Zbl0539.35067MR723756
  23. [23] Shatah J., Strauss W., Instability of nonlinear bound states, Comm. Math. Phys.100 (1985) 173-190. Zbl0603.35007MR804458
  24. [24] Takaoka H., Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity, Adv. Differential Equations4 (1999) 561-580. Zbl0951.35125MR1693278
  25. [25] Takaoka H., Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces, Electron. J. Differential Equations2001 (42) (2001) 1-23. Zbl0972.35140MR1836810
  26. [26] Weinstein M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys.87 (1983) 567-576. Zbl0527.35023MR691044
  27. [27] Weinstein M.I., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math.39 (1986) 51-68. Zbl0594.35005MR820338

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.