Stability of solitary waves for derivative nonlinear Schrödinger equation
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 5, page 753-764
- ISSN: 0294-1449
Access Full Article
topHow to cite
topColin, Mathieu, and Ohta, Masahito. "Stability of solitary waves for derivative nonlinear Schrödinger equation." Annales de l'I.H.P. Analyse non linéaire 23.5 (2006): 753-764. <http://eudml.org/doc/78710>.
@article{Colin2006,
author = {Colin, Mathieu, Ohta, Masahito},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {solitary wave; orbital stability; DNLS},
language = {eng},
number = {5},
pages = {753-764},
publisher = {Elsevier},
title = {Stability of solitary waves for derivative nonlinear Schrödinger equation},
url = {http://eudml.org/doc/78710},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Colin, Mathieu
AU - Ohta, Masahito
TI - Stability of solitary waves for derivative nonlinear Schrödinger equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 5
SP - 753
EP - 764
LA - eng
KW - solitary wave; orbital stability; DNLS
UR - http://eudml.org/doc/78710
ER -
References
top- [1] Biagioni H.A., Linares F., Ill-posedness for the derivative Schrödinger and generalized Benjamin–Ono equations, Trans. Amer. Math. Soc.353 (2001) 3649-3659. Zbl0970.35154MR1837253
- [2] Berestycki H., Cazenave T., Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires, C. R. Acad. Sci. Paris293 (1981) 489-492. Zbl0492.35010MR646873
- [3] Brézis H., Lieb E.H., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc.88 (1983) 486-490. Zbl0526.46037MR699419
- [4] Cazenave T., Semilinear Schrödinger equations, Courant Lecture Notes Math., vol. 10, New York University, Courant Institute of Mathematical Sciences, American Mathematical Society, New York, Providence, RI, 2003. Zbl1055.35003MR2002047
- [5] Cazenave T., Lions P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys.85 (1982) 549-561. Zbl0513.35007MR677997
- [6] Fröhlich J., Lieb E.H., Loss M., Stability of Coulomb systems with magnetic fields I. The one-electron atom, Comm. Math. Phys.104 (1986) 251-270. Zbl0595.35098MR836003
- [7] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal.74 (1987) 160-197. Zbl0656.35122MR901236
- [8] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal.94 (1990) 308-348. Zbl0711.58013MR1081647
- [9] Guo Boling, Wu Yaping, Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation, J. Differential Equations123 (1995) 35-55. Zbl0844.35116MR1359911
- [10] Hayashi N., The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal.20 (1993) 823-833. Zbl0787.35099MR1214746
- [11] Hayashi N., Ozawa T., On the derivative nonlinear Schrödinger equation, Physica D55 (1992) 14-36. Zbl0741.35081MR1152001
- [12] Hayashi N., Ozawa T., Finite energy solutions of nonlinear Schrödinger equations of derivative type, SIAM J. Math. Anal.25 (1994) 1488-1503. Zbl0809.35124MR1302158
- [13] Lieb E.H., On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math.74 (1983) 441-448. Zbl0538.35058MR724014
- [14] Mio W., Ogino T., Minami K., Takeda S., Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan41 (1976) 265-271. Zbl1334.76181MR462141
- [15] Mjølhus E., On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys.16 (1976) 321-334.
- [16] Nawa H., Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity, J. Math. Soc. Japan46 (1994) 557-586. Zbl0829.35121MR1291107
- [17] Ohta M., Stability of standing waves for the generalized Davey–Stewartson system, J. Dynam. Differential Equations6 (1994) 325-334. Zbl0805.35098MR1280142
- [18] Ohta M., Stability and instability of standing waves for one-dimensional nonlinear Schrödinger equations with double power nonlinearity, Kodai Math. J.18 (1995) 68-74. Zbl0868.35111MR1317007
- [19] Ohta M., Stability and instability of standing waves for the generalized Davey–Stewartson system, Differential Integral Equations8 (1995) 1775-1788. Zbl0827.35122MR1347979
- [20] Ohta M., Blow-up solutions and strong instability of standing waves for the generalized Davey–Stewartson system in , Ann. Inst. H. Poincaré Phys. Théor.63 (1995) 111-117. Zbl0832.35132MR1354441
- [21] Ozawa T., On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J.45 (1996) 137-163. Zbl0859.35117MR1406687
- [22] Shatah J., Stable standing waves of nonlinear Klein–Gordon equations, Comm. Math. Phys.91 (1983) 313-327. Zbl0539.35067MR723756
- [23] Shatah J., Strauss W., Instability of nonlinear bound states, Comm. Math. Phys.100 (1985) 173-190. Zbl0603.35007MR804458
- [24] Takaoka H., Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity, Adv. Differential Equations4 (1999) 561-580. Zbl0951.35125MR1693278
- [25] Takaoka H., Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces, Electron. J. Differential Equations2001 (42) (2001) 1-23. Zbl0972.35140MR1836810
- [26] Weinstein M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys.87 (1983) 567-576. Zbl0527.35023MR691044
- [27] Weinstein M.I., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math.39 (1986) 51-68. Zbl0594.35005MR820338
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.