Orbital stability for polytropic galaxies

Óscar Sánchez; Juan Soler

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 6, page 781-802
  • ISSN: 0294-1449

How to cite

top

Sánchez, Óscar, and Soler, Juan. "Orbital stability for polytropic galaxies." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 781-802. <http://eudml.org/doc/78712>.

@article{Sánchez2006,
author = {Sánchez, Óscar, Soler, Juan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Vlasov-Poisson system; stellar dynamics; polytropic gas spheres; Galilean invariance; concentration compactness; direct variational methods},
language = {eng},
number = {6},
pages = {781-802},
publisher = {Elsevier},
title = {Orbital stability for polytropic galaxies},
url = {http://eudml.org/doc/78712},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Sánchez, Óscar
AU - Soler, Juan
TI - Orbital stability for polytropic galaxies
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 781
EP - 802
LA - eng
KW - Vlasov-Poisson system; stellar dynamics; polytropic gas spheres; Galilean invariance; concentration compactness; direct variational methods
UR - http://eudml.org/doc/78712
ER -

References

top
  1. [1] Antonov V.A., Remarks on the problems of stability in stellar dynamics, Soviet Astron. AJ.4 (1961) 859-867. MR131633
  2. [2] Antonov V.A., Solution of the problem of stability of a stellar system with the Emden density law and spherical velocity distribution, J. Leningrad Univ. Ser. Mekh. Astro.7 (1962) 135-146. 
  3. [3] Barnes J., Goodman J., Hut P., Dynamical instabilities in spherical stellar systems, Astrophys. J.300 (1986) 112-131. MR825605
  4. [4] J. Batt, A survey of recent results in the investigation of the Vlasov–Poisson system and questions open for further research, in: L.L. Bonilla, B. Perthame, J. Soler, J.L. Vázquez (Eds.), European Workshop on Kinetic Equations, Book of Abstracts, Granada, Spain, 1996. 
  5. [5] Batt J., Faltenbacher W., Horst E., Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal.93 (2) (1986) 159-183. Zbl0605.70008MR823117
  6. [6] Cazenave T., An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, vol. 26, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 1996. 
  7. [7] Cazenave T., Lions P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys.85 (1982) 549-561. Zbl0513.35007MR677997
  8. [8] Dolbeault J., Sánchez O., Soler J., Asymptotic behaviour for the Vlasov–Poisson system in the stellar dynamics case, Arch. Rational Mech. Anal.171 (2004) 301-327. Zbl1057.70009MR2038342
  9. [9] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, I, J. Func. Anal.74 (1987) 160-197. Zbl0656.35122MR901236
  10. [10] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, II, J. Func. Anal.94 (1990) 308-348. Zbl0711.58013MR1081647
  11. [11] Guo Y., Variational method for stable polytropic galaxies, Arch. Rational Mech. Anal.150 (1999) 209-224. Zbl0953.70011MR1738118
  12. [12] Guo Y., On the generalized Antonov's stability criterion, Contemp. Math.150 (2000) 85-107. Zbl0974.35092MR1777637
  13. [13] Guo Y., Rein G., Stable steady states in stellar dynamics, Arch. Rational Mech. Anal.147 (1999) 225-243. Zbl0935.70011MR1709211
  14. [14] Guo Y., Rein G., Isotropic steady states in galactic dynamics, Commun. Math. Phys.209 (2001) 607-629. Zbl0974.35093MR1838751
  15. [15] Hardy G., Littlewood J.E., Pólya G., Inequalities, Cambridge Mathematical Press, Cambridge, 1952. Zbl0634.26008MR46395
  16. [16] Hénon M., Numerical experiments on the stability of spherical stellar systems, Astronom. Astrophys.24 (1973) 229-238. 
  17. [17] Lieb E., Loss M., Analysis, American Mathematical Society, Providence, RI, 2001. Zbl0966.26002MR1817225
  18. [18] Lions P.L., Perthame B., Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math.105 (2) (1991) 415-430. Zbl0741.35061MR1115549
  19. [19] Rein G., Reduction and a concentration–compactness principle for energy–Casimir functionals, SIAM J. Math. Anal.33 (2001) 896-912. Zbl1019.35003MR1884728
  20. [20] Rein G., Stability of spherically symmetric steady states in galactic dynamics against general perturbations, Arch. Rational Mech. Anal.161 (2002) 27-42. Zbl0998.35041MR1883757
  21. [21] Schaeffer J., Steady states in galactic dynamics, Arch. Rational Mech. Anal.172 (2004) 1-19. Zbl1061.85001MR2048565
  22. [22] Wan Y.H., On nonlinear stability of isotropic models in stellar dynamics, Arch. Rational Mech. Anal.147 (1999) 245-268. Zbl0931.70012MR1709207
  23. [23] Wolansky G., On nonlinear stability of polytropic galaxies, Ann. Inst. H. Poincaré Anal. Non Linéaire16 (1999) 15-48. Zbl0927.70019MR1668556

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.