Orbital stability for polytropic galaxies
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 6, page 781-802
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSánchez, Óscar, and Soler, Juan. "Orbital stability for polytropic galaxies." Annales de l'I.H.P. Analyse non linéaire 23.6 (2006): 781-802. <http://eudml.org/doc/78712>.
@article{Sánchez2006,
author = {Sánchez, Óscar, Soler, Juan},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Vlasov-Poisson system; stellar dynamics; polytropic gas spheres; Galilean invariance; concentration compactness; direct variational methods},
language = {eng},
number = {6},
pages = {781-802},
publisher = {Elsevier},
title = {Orbital stability for polytropic galaxies},
url = {http://eudml.org/doc/78712},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Sánchez, Óscar
AU - Soler, Juan
TI - Orbital stability for polytropic galaxies
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 6
SP - 781
EP - 802
LA - eng
KW - Vlasov-Poisson system; stellar dynamics; polytropic gas spheres; Galilean invariance; concentration compactness; direct variational methods
UR - http://eudml.org/doc/78712
ER -
References
top- [1] Antonov V.A., Remarks on the problems of stability in stellar dynamics, Soviet Astron. AJ.4 (1961) 859-867. MR131633
- [2] Antonov V.A., Solution of the problem of stability of a stellar system with the Emden density law and spherical velocity distribution, J. Leningrad Univ. Ser. Mekh. Astro.7 (1962) 135-146.
- [3] Barnes J., Goodman J., Hut P., Dynamical instabilities in spherical stellar systems, Astrophys. J.300 (1986) 112-131. MR825605
- [4] J. Batt, A survey of recent results in the investigation of the Vlasov–Poisson system and questions open for further research, in: L.L. Bonilla, B. Perthame, J. Soler, J.L. Vázquez (Eds.), European Workshop on Kinetic Equations, Book of Abstracts, Granada, Spain, 1996.
- [5] Batt J., Faltenbacher W., Horst E., Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal.93 (2) (1986) 159-183. Zbl0605.70008MR823117
- [6] Cazenave T., An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, vol. 26, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 1996.
- [7] Cazenave T., Lions P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys.85 (1982) 549-561. Zbl0513.35007MR677997
- [8] Dolbeault J., Sánchez O., Soler J., Asymptotic behaviour for the Vlasov–Poisson system in the stellar dynamics case, Arch. Rational Mech. Anal.171 (2004) 301-327. Zbl1057.70009MR2038342
- [9] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, I, J. Func. Anal.74 (1987) 160-197. Zbl0656.35122MR901236
- [10] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, II, J. Func. Anal.94 (1990) 308-348. Zbl0711.58013MR1081647
- [11] Guo Y., Variational method for stable polytropic galaxies, Arch. Rational Mech. Anal.150 (1999) 209-224. Zbl0953.70011MR1738118
- [12] Guo Y., On the generalized Antonov's stability criterion, Contemp. Math.150 (2000) 85-107. Zbl0974.35092MR1777637
- [13] Guo Y., Rein G., Stable steady states in stellar dynamics, Arch. Rational Mech. Anal.147 (1999) 225-243. Zbl0935.70011MR1709211
- [14] Guo Y., Rein G., Isotropic steady states in galactic dynamics, Commun. Math. Phys.209 (2001) 607-629. Zbl0974.35093MR1838751
- [15] Hardy G., Littlewood J.E., Pólya G., Inequalities, Cambridge Mathematical Press, Cambridge, 1952. Zbl0634.26008MR46395
- [16] Hénon M., Numerical experiments on the stability of spherical stellar systems, Astronom. Astrophys.24 (1973) 229-238.
- [17] Lieb E., Loss M., Analysis, American Mathematical Society, Providence, RI, 2001. Zbl0966.26002MR1817225
- [18] Lions P.L., Perthame B., Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system, Invent. Math.105 (2) (1991) 415-430. Zbl0741.35061MR1115549
- [19] Rein G., Reduction and a concentration–compactness principle for energy–Casimir functionals, SIAM J. Math. Anal.33 (2001) 896-912. Zbl1019.35003MR1884728
- [20] Rein G., Stability of spherically symmetric steady states in galactic dynamics against general perturbations, Arch. Rational Mech. Anal.161 (2002) 27-42. Zbl0998.35041MR1883757
- [21] Schaeffer J., Steady states in galactic dynamics, Arch. Rational Mech. Anal.172 (2004) 1-19. Zbl1061.85001MR2048565
- [22] Wan Y.H., On nonlinear stability of isotropic models in stellar dynamics, Arch. Rational Mech. Anal.147 (1999) 245-268. Zbl0931.70012MR1709207
- [23] Wolansky G., On nonlinear stability of polytropic galaxies, Ann. Inst. H. Poincaré Anal. Non Linéaire16 (1999) 15-48. Zbl0927.70019MR1668556
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.