Localized minimizers of flat rotating gravitational systems
Jean Dolbeault; Javier Fernández
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 6, page 1043-1071
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDolbeault, Jean, and Fernández, Javier. "Localized minimizers of flat rotating gravitational systems." Annales de l'I.H.P. Analyse non linéaire 25.6 (2008): 1043-1071. <http://eudml.org/doc/78823>.
@article{Dolbeault2008,
author = {Dolbeault, Jean, Fernández, Javier},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {stellar dynamics; gravitation; mass; rotation; angular velocity; entropy; diffusion limit; drift-diffusion; Hardy-Littlewood-Sobolev inequality; bounded solutions; minimization; solutions with compact support; radial solutions; localized minimizers},
language = {eng},
number = {6},
pages = {1043-1071},
publisher = {Elsevier},
title = {Localized minimizers of flat rotating gravitational systems},
url = {http://eudml.org/doc/78823},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Dolbeault, Jean
AU - Fernández, Javier
TI - Localized minimizers of flat rotating gravitational systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 6
SP - 1043
EP - 1071
LA - eng
KW - stellar dynamics; gravitation; mass; rotation; angular velocity; entropy; diffusion limit; drift-diffusion; Hardy-Littlewood-Sobolev inequality; bounded solutions; minimization; solutions with compact support; radial solutions; localized minimizers
UR - http://eudml.org/doc/78823
ER -
References
top- [1] Arnol'd V.I., On conditions for non-linear stability of plane stationary curvilinear flows of an ideal fluid, Dokl. Akad. Nauk SSSR162 (1965) 975-978. Zbl0141.43901MR180051
- [2] Arnol'd V.I., An a priori estimate in the theory of hydrodynamic stability, Izv. Vyssh. Uchebn. Zaved. Mat.1966 (1966) 3-5. Zbl0158.44904MR205552
- [3] Bavaud F., Equilibrium properties of the Vlasov functional: the generalized Poisson–Boltzmann–Emden equation, Rev. Modern Phys.63 (1991) 129-148. MR1102194
- [4] Ben Abdallah N., Dolbeault J., Relative entropies for the Vlasov–Poisson system in bounded domains, C. R. Acad. Sci. Paris Sér. I Math.330 (2000) 867-872. Zbl0960.35100MR1771949
- [5] Ben Abdallah N., Dolbeault J., Relative entropies for kinetic equations in bounded domains (irreversibility, stationary solutions, uniqueness), Arch. Ration. Mech. Anal.168 (2003) 253-298. Zbl1044.76054MR1994744
- [6] Biler P., Laurençot P., Nadzieja T., On an evolution system describing self-gravitating Fermi–Dirac particles, Adv. Differential Equations9 (2004) 563-586. Zbl1103.35086MR2099972
- [7] Biler P., Nadzieja T., Stańczy R., Nonisothermal systems of self-attracting Fermi–Dirac particles, in: Nonlocal Elliptic and Parabolic Problems, Banach Center Publ., vol. 66, Polish Acad. Sci., Warsaw, 2004, pp. 61-78. Zbl1146.35415MR2143357
- [8] P. Biler, R. Stánczy, Parabolic-elliptic systems with general density–pressure relations, Tech. rep., Mathematical Institute of the University of Wrocław, 2004.
- [9] Binney J., Tremaine S., Galactic Dynamics, Princeton University Press, Princeton, 1987. Zbl1130.85301
- [10] Burchard A., Guo Y., Compactness via symmetrization, J. Funct. Anal.214 (2004) 40-73. Zbl1065.49006MR2079885
- [11] Catrina F., Wang Z.-Q., On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math.54 (2001) 229-258. Zbl1072.35506MR1794994
- [12] Chavanis P.-H., Generalized thermodynamics and Fokker–Planck equations: applications to stellar dynamics and two-dimensional turbulence, Phys. Rev. E (2003) 036108.
- [13] Chavanis P.-H., Generalized Fokker–Planck equations and effective thermodynamics, Phys. A340 (2004) 57-65, News and expectations in thermostatistics. MR2088323
- [14] Chavanis P.-H., Generalized kinetic equations and effective thermodynamics, Banach Center Publ.66 (2004) 79-102. Zbl1235.82060MR2143358
- [15] Chavanis P.-H., Generalized thermodynamics and kinetic equations: Boltzmann, Landau, Kramers and Smoluchowski, Physica A332 (2004) 89. MR2048365
- [16] Chavanis P.-H., Hamiltonian and Brownian systems with long-range interactions, Physica A361 (2006) 55-80. MR2185919
- [17] Chavanis P.-H., Laurencot P., Lemou M., Chapman–Enskog derivation of the generalized Smoluchowski equation, Physica A341 (2004) 145-164. MR2092680
- [18] Chavanis P.-H., Ribot M., Rosier C., Sire C., On the analogy between self-gravitating Brownian particles and bacterial populations, in: Banach Center Publ., vol. 66, 2004, pp. 103. Zbl1055.92005MR2143359
- [19] Chavanis P.-H., Sire C., Anomalous diffusion and collapse of self-gravitating Langevin particles in d dimensions, Phys. Rev. E69 (2004) 016116.
- [20] Collet J.F., Extensive Lyapounov functionals for moment-preserving evolution equations, C. R. Math. Acad. Sci. Paris, Ser. I334 (2002) 429-434. Zbl1090.82026MR1892947
- [21] Cortázar C., Elgueta M., Felmer P., Existence of signed solutions for a semilinear elliptic boundary value problem, Differential Integral Equations7 (1994) 293-299. Zbl0819.35052MR1250952
- [22] Cortázar C., Elgueta M., Felmer P., On a semilinear elliptic problem in with a non-Lipschitzian nonlinearity, Adv. Differential Equations1 (1996) 199-218. Zbl0845.35031MR1364001
- [23] Dolbeault J., Monokinetic charged particle beams: qualitative behavior of the solutions of the Cauchy problem and 2d time-periodic solutions of the Vlasov–Poisson system, Comm. Partial Differential Equations25 (2000) 1567-1647. Zbl0971.35075MR1778774
- [24] J. Dolbeault, P. Felmer, J. Mayorga-Zambrano, Compactness properties for trace-class operators and applications to quantum mechanics, Monatshefte für Mathematik (2008), in press. Zbl1151.81014MR2434925
- [25] Dolbeault J., Fernández J., Sánchez O., Stability for the gravitational Vlasov–Poisson system in dimension two, Comm. Partial Differential Equations31 (2006) 1425-1449. Zbl1107.35009MR2273960
- [26] Dolbeault J., Markowich P., Oelz D., Schmeiser C., Nonlinear diffusions as limit of kinetic equations with relaxation collision kernels, Arch. Rational Mech. Anal.186 (2007) 133-158. Zbl1148.76047MR2338354
- [27] Dolbeault J., Sánchez O., Soler J., Asymptotic behaviour for the Vlasov–Poisson system in the stellar-dynamics case, Arch. Ration. Mech. Anal.171 (2004) 301-327. Zbl1057.70009MR2038342
- [28] Felli V., Schneider M., Perturbation results of critical elliptic equations of Caffarelli–Kohn–Nirenberg type, J. Differential Equations191 (2003) 121-142. Zbl1088.35023MR1973285
- [29] Fiřt R., Stability of disk-like galaxies. II: The Kuzmin disk, Analysis (Munich)27 (2007) 405-424. Zbl1144.35340MR2373664
- [30] Fiřt R., Rein G., Stability of disk-like galaxies. I: Stability via reduction, Analysis (Munich)26 (2006) 507-525. Zbl1135.35084MR2329590
- [31] Floer A., Weinstein A., Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal.69 (1986) 397-408. Zbl0613.35076MR867665
- [32] Gidas B., Ni W.M., Nirenberg L., Symmetry and related properties via the maximum principle, Commun. Math. Phys.68 (1979) 209-243. Zbl0425.35020MR544879
- [33] Gidas B., Ni W.M., Nirenberg L., Symmetry of positive solutions of nonlinear elliptic equations in , in: Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York, 1981, pp. 369-402. Zbl0469.35052MR634248
- [34] Goudon T., Poupaud F., Approximation by homogenization and diffusion of kinetic equations, Comm. Partial Differential Equations26 (2001) 537-569. Zbl0988.35023MR1842041
- [35] Guo Y., Rein G., Existence and stability of Camm type steady states in galactic dynamics, Indiana Univ. Math. J.48 (1999) 1237-1255. Zbl0945.35003MR1757074
- [36] Guo Y., Rein G., Stable steady states in stellar dynamics, Arch. Ration. Mech. Anal.147 (1999) 225-243. Zbl0935.70011MR1709211
- [37] Guo Y., Rein G., Isotropic steady states in galactic dynamics, Commun. Math. Phys.219 (2001) 607-629. Zbl0974.35093MR1838751
- [38] Guo Y., Rein G., Stable models of elliptical galaxies, Mon. Not. R. Astronom. (2003).
- [39] Guo Y., Rein G., A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Commun. Math. Phys.271 (2007) 489-509. Zbl1130.85002MR2287914
- [40] Hadžić M., Rein G., Global existence and nonlinear stability for the relativistic Vlasov–Poisson system in the gravitational case, Indiana Univ. Math. J.56 (2007) 2453-2488. Zbl1133.35011MR2360616
- [41] Lemou M., Méhats F., Raphael P., Orbital stability and singularity formation for Vlasov–Poisson systems, C. R. Math. Acad. Sci. Paris, Ser. I341 (2005) 269-274. Zbl1073.70012MR2164685
- [42] Li Y.Y., On uniformly rotating stars, Arch. Ration. Mech. Anal.115 (1991) 367-393. Zbl0850.76784MR1120853
- [43] Lieb E.H., Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. of Math. (2)118 (1983) 349-374. Zbl0527.42011MR717827
- [44] Lieb E.H., Loss M., Analysis, Graduate Studies in Mathematics, vol. 14, second ed., American Mathematical Society, Providence, RI, 2001. Zbl0966.26002MR1817225
- [45] Luo T., Smoller J., Rotating fluids with self-gravitation in bounded domains, Arch. Ration. Mech. Anal.173 (2004) 345-377. Zbl1060.76125MR2091509
- [46] Markowich P., Rein G., Wolansky G., Existence and nonlinear stability of stationary states of the Schrödinger–Poisson system, J. Statist. Phys.106 (2002) 1221-1239. Zbl1001.82107MR1889607
- [47] McCann R.J., Stable rotating binary stars and fluid in a tube, Houston J. Math.32 (2006) 603-631, (electronic). Zbl1096.85006MR2219334
- [48] Padmanabhan T., Statistical mechanics of gravitating systems, Phys. Rep.188 (1990) 285-362. Zbl1211.82001MR1052381
- [49] Rein G., Non-linear stability for the Vlasov–Poisson system—the energy-Casimir method, Math. Methods Appl. Sci.17 (1994) 1129-1140. Zbl0814.76094MR1303559
- [50] Rein G., Flat steady states in stellar dynamics – existence and stability, Commun. Math. Phys.205 (1999) 229-247. Zbl0937.85003MR1706880
- [51] Rein G., Reduction and a concentration-compactness principle for energy-Casimir functionals, SIAM J. Math. Anal.33 (2001) 896-912, (electronic). Zbl1019.35003MR1884728
- [52] Rein G., Non-linear stability of gaseous stars, Arch. Ration. Mech. Anal.168 (2003) 115-130. Zbl1044.76026MR1991989
- [53] Rein G., Nonlinear stability of Newtonian galaxies and stars from a mathematical perspective, Ann. New York Acad. Sci.1045 (2005) 103-119.
- [54] Sánchez O., Soler J., Orbital stability for polytropic galaxies, Ann. Inst. H. Poincaré Anal. Non Linéaire23 (2006) 781-802. Zbl1110.35011MR2271693
- [55] Schaeffer J., Steady states in galactic dynamics, Arch. Ration. Mech. Anal.172 (2004) 1-19. Zbl1061.85001MR2048565
- [56] Smets D., Willem M., Partial symmetry and asymptotic behavior for some elliptic variational problems, Calc. Var. Partial Differential Equations18 (2003) 57-75. Zbl1274.35026MR2001882
- [57] Toscani G., Remarks on entropy and equilibrium states, Appl. Math. Lett.12 (1999) 19-25. Zbl0940.35168MR1750055
- [58] Tsallis C., Possible generalization of Boltzmann–Gibbs statistics, J. Statist. Phys.52 (1988) 479-487. Zbl1082.82501MR968597
- [59] Vladimirov V.A., Ilin K.I., On Arnol'd's variational principles in fluid mechanics, in: The Arnoldfest, Toronto, ON, 1997, Fields Inst. Commun., vol. 24, Amer. Math. Soc., Providence, RI, 1999, pp. 471-495. Zbl0981.76071
- [60] Wolansky G., On nonlinear stability of polytropic galaxies, Ann. Inst. H. Poincaré Anal. Non Linéaire16 (1999) 15-48. Zbl0927.70019MR1668556
- [61] Wolansky G., Ghil M., An extension of Arnol'd's second stability theorem for the Euler equations, Physica D94 (1996) 161-167. Zbl0890.58087MR1398637
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.