Traveling wave solutions of the heat flow of director fields

M. Bertsch; I. Primi

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 2, page 227-250
  • ISSN: 0294-1449

How to cite

top

Bertsch, M., and Primi, I.. "Traveling wave solutions of the heat flow of director fields." Annales de l'I.H.P. Analyse non linéaire 24.2 (2007): 227-250. <http://eudml.org/doc/78733>.

@article{Bertsch2007,
author = {Bertsch, M., Primi, I.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {harmonic maps; topological degree; relaxed energy; point singularity},
language = {eng},
number = {2},
pages = {227-250},
publisher = {Elsevier},
title = {Traveling wave solutions of the heat flow of director fields},
url = {http://eudml.org/doc/78733},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Bertsch, M.
AU - Primi, I.
TI - Traveling wave solutions of the heat flow of director fields
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 2
SP - 227
EP - 250
LA - eng
KW - harmonic maps; topological degree; relaxed energy; point singularity
UR - http://eudml.org/doc/78733
ER -

References

top
  1. [1] Bertsch M., Dal Passo R., Pisante A., Point singularities and nonuniqueness for the heat flow for harmonic maps, Comm. Partial Differential Equations28 (2003) 1135-1160. Zbl1029.58008MR1986064
  2. [2] Bertsch M., Dal Passo R., Van der Hout R., Nonuniqueness for the heat flow of harmonic maps on the disk, Arch. Rational Mech. Anal.161 (2) (2002) 93-112. Zbl1006.35050MR1870959
  3. [3] Bertsch M., Muratov C., Primi I., Traveling wave solutions of harmonic heat flow, Calc. Var. Partial Differential Equations26 (2006) 489-509. Zbl1098.35076MR2235884
  4. [4] M. Bertsch, I. Primi, Non uniqueness of the traveling wave speed for harmonic heat flow, preprint, 2005. 
  5. [5] Bertsch M., Podio-Guidugli P., Valente V., On the dynamics of deformable ferromagnets. I. Global weak solutions for soft ferromagnets at rest, Ann. Mat. Pura Appl.CLXXIX (2001) 331-360. Zbl1097.74017MR1848770
  6. [6] Bethuel F., Brezis H., Coron J.M., Relaxed energies for harmonic maps, in: Variational Methods (Paris, 1988), Progress in Nonlinear Differential Equations and their Applications, vol. 4, Birkhäuser Boston, Boston, 1990, pp. 37-52. Zbl0793.58011MR1205144
  7. [7] Chang K.-C., Ding W.-Y., Ye R., Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differential Geom.36 (2) (1992) 507-515. Zbl0765.53026MR1180392
  8. [8] Coron J.M., Nonuniqueness for the heat flow of harmonic maps, Ann. Inst. H. Poincaré Anal. Non Linéaire7 (1990) 335-344. Zbl0707.58017MR1067779
  9. [9] Grotowski J.F., Harmonic map heat flow for axially symmetric data, Manuscripta Math.73 (1991) 207-228. Zbl0764.58007MR1128688
  10. [10] Grotowski J.F., Concentrated boundary data and axially symmetric harmonic maps, J. Geom. Anal.3 (1993) 279-292. Zbl0782.58017MR1225299
  11. [11] Hamilton R.S., Harmonic Maps of Manifolds with Boundary, Lecture Notes, vol. 471, Springer, Berlin, 1975. Zbl0308.35003MR482822
  12. [12] Hardt R., Lin F.H., Poon C.C., Axially symmetric harmonic maps minimizing a relaxed energy, Comm. Pure Appl. Math.14 (1992) 417-459. Zbl0769.58013MR1161539
  13. [13] Jost J., Harmonic mappings between Riemannian manifolds, in: Proc. Centre Math. Analysis, Canberra, Australian National University Press, 1983. Zbl0542.58001MR756629
  14. [14] Kawohl B., Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Mathematics, vol. 1150, Springer-Verlag, Berlin, 1985. Zbl0593.35002MR810619
  15. [15] I. Primi, Nonuniqueness of the heat flow of director fields, in preparation. 
  16. [16] Matano H., Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math.29 (2) (1982) 401-441. Zbl0496.35011MR672070
  17. [17] Pisante A., Reverse bubbling of currents and harmonic heat flows with prescribed singular set, Calc. Var. Partial Differential Equations19 (4) (2004) 337-378. Zbl1059.58010MR2039458
  18. [18] I. Primi, Traveling Waves of Director Fields, PhD thesis, University of Rome “La Sapienza”, 2005. 
  19. [19] Topping P., Reverse bubbling and nonuniqueness in the harmonic map flow, Int. Math. Res. Notices10 (2002) 505-520. Zbl1003.58014MR1883901
  20. [20] Van der Hout R., Flow alignment in nematic liquid crystals in flows with cylindrical symmetry, Differential Integral Equations14 (2) (2001) 189-211. Zbl1021.35028MR1797386

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.