Nonuniqueness for the heat flow of harmonic maps

J.-M. Coron

Annales de l'I.H.P. Analyse non linéaire (1990)

  • Volume: 7, Issue: 4, page 335-344
  • ISSN: 0294-1449

How to cite

top

Coron, J.-M.. "Nonuniqueness for the heat flow of harmonic maps." Annales de l'I.H.P. Analyse non linéaire 7.4 (1990): 335-344. <http://eudml.org/doc/78227>.

@article{Coron1990,
author = {Coron, J.-M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {heat flow; evolution; harmonic maps},
language = {eng},
number = {4},
pages = {335-344},
publisher = {Gauthier-Villars},
title = {Nonuniqueness for the heat flow of harmonic maps},
url = {http://eudml.org/doc/78227},
volume = {7},
year = {1990},
}

TY - JOUR
AU - Coron, J.-M.
TI - Nonuniqueness for the heat flow of harmonic maps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1990
PB - Gauthier-Villars
VL - 7
IS - 4
SP - 335
EP - 344
LA - eng
KW - heat flow; evolution; harmonic maps
UR - http://eudml.org/doc/78227
ER -

References

top
  1. [1] H. Brezis, J.M. Coron and E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys., t. 107, 1986, p. 649-705. Zbl0608.58016MR868739
  2. [2] Y. Chen, Weak solutions to the evolution problem for harmonic maps into spheres, preprint, Math. Z., t. 201, 1989, p. 69-74. Zbl0685.58015MR990189
  3. [3] Y. Chen and M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps, Math. Z., t. 201, 1989, p. 83-103. Zbl0652.58024MR990191
  4. [4] R. Cohen, R. Hardt, D. Kinderlehrer, S.Y. Lin and M. Luskin, Minimum energy configurations from liquid crystals: computational results, Theory and Appl. of liquid crystals, I. M. A. Vol. Math. Appl., vol. 5, Springer, 1987, p. 99-122. 
  5. [5] J.M. Coron and J.M. Ghidaglia, Explosion en temps fini pour le flot des applications harmoniques, C. R. Acad. Sci. Paris, t. 308, 1989, p. 339-344. Zbl0679.58017MR992088
  6. [6] J. Eells and J.H. Sampson, Harmonic mappings of Riemannian manifolds, Am. J. Math., t. 86, 1964, p. 109-160. Zbl0122.40102MR164306
  7. [7] R. Hardt, D. Kinderlehrer and F.H. Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, t. 5, 1988, p. 297-322. Zbl0657.49018MR963102
  8. [8] J. Keller, J. Rubinstein and P. Sternberg, Reaction diffusion processes and evolution to harmonic maps, preprint, 1988. Zbl0702.35128MR1025956
  9. [9] P. Price, A monotonicity formula for Yang-Mills fields, Manuscripta Math., t. 43, 1983, p. 131-166. Vol. 7, n° 4-1990. Zbl0521.58024MR707042
  10. [10] M. Struwe, On the evolution of harmonic maps in higher dimension, J. Diff. Geom., t. 28, 1988, p. 485-502. Zbl0631.58004MR965226
  11. [11] M. Struwe, On the evolution of harmonic maps of Riemannian surfaces, Comm. Math. Helv., t.60 , 1985, p. 558-581. Zbl0595.58013MR826871

NotesEmbed ?

top

You must be logged in to post comments.