Strong instability of solitary waves for nonlinear Klein–Gordon equations and generalized Boussinesq equations

Yue Liu; Masahito Ohta; Grozdena Todorova

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 4, page 539-548
  • ISSN: 0294-1449

How to cite

top

Liu, Yue, Ohta, Masahito, and Todorova, Grozdena. "Strong instability of solitary waves for nonlinear Klein–Gordon equations and generalized Boussinesq equations." Annales de l'I.H.P. Analyse non linéaire 24.4 (2007): 539-548. <http://eudml.org/doc/78748>.

@article{Liu2007,
author = {Liu, Yue, Ohta, Masahito, Todorova, Grozdena},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Klein-Gordon equation; Boussinesq equation; standing wave; solitary wave; strong instability; blow-up},
language = {eng},
number = {4},
pages = {539-548},
publisher = {Elsevier},
title = {Strong instability of solitary waves for nonlinear Klein–Gordon equations and generalized Boussinesq equations},
url = {http://eudml.org/doc/78748},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Liu, Yue
AU - Ohta, Masahito
AU - Todorova, Grozdena
TI - Strong instability of solitary waves for nonlinear Klein–Gordon equations and generalized Boussinesq equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 4
SP - 539
EP - 548
LA - eng
KW - nonlinear Klein-Gordon equation; Boussinesq equation; standing wave; solitary wave; strong instability; blow-up
UR - http://eudml.org/doc/78748
ER -

References

top
  1. [1] Berestycki H., Cazenave T., Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires, C. R. Acad. Sci. Paris293 (1981) 489-492. Zbl0492.35010
  2. [2] Berestycki H., Gallouët T., Kavian O., Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris297 (1983) 307-310. Zbl0544.35042MR734575
  3. [3] Berestycki H., Lions P.L., Nonlinear scalar field equations, Arch. Rat. Mech. Anal.82 (1983) 313-345. Zbl0533.35029MR695535
  4. [4] Bona J., Sachs R., Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Comm. Math. Phys.118 (1988) 15-29. Zbl0654.35018MR954673
  5. [5] Boussinesq J., Théorie des ondes et de remous qui se propagent…, J. Math. Pures Appl.17 (1872) 55-108. JFM04.0493.04
  6. [6] Brezis H., Lieb E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc.88 (1983) 486-490. Zbl0526.46037MR699419
  7. [7] R.E. Caflisch, Shallow water waves, Lecture notes, New York University, New York. 
  8. [8] Cazenave T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, American Mathematical Society, Providence, RI, 2003. Zbl1055.35003MR2002047
  9. [9] Cazenave T., Lions P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys.85 (1982) 549-561. Zbl0513.35007MR677997
  10. [10] Fröhlich J., Lieb E.H., Loss M., Stability of Coulomb systems with magnetic fields I. The one-electron atom, Comm. Math. Phys.104 (1986) 251-270. Zbl0595.35098MR836003
  11. [11] Ginibre J., Velo G., The global Cauchy problem for the non linear Klein–Gordon equation, Math. Z.189 (1985) 487-505. Zbl0549.35108
  12. [12] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal.74 (1987) 160-197. Zbl0656.35122MR901236
  13. [13] Grillakis M., Shatah J., Strauss W., Stability theory of solitary waves in the presence of symmetry, II, J. Funct. Anal.94 (1990) 308-348. Zbl0711.58013MR1081647
  14. [14] Kwong M.K., Uniqueness of positive solutions of Δ u - u + u p = 0 in R n , Arch. Rational Mech. Anal.105 (1989) 234-266. Zbl0676.35032MR969899
  15. [15] Levine H.A., Instability and nonexistence of global solutions to nonlinear wave equations of the form P u t t = - A u + F u , Trans. Amer. Math. Soc.192 (1974) 1-21. Zbl0288.35003MR344697
  16. [16] Lieb E., On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math.74 (1983) 441-448. Zbl0538.35058MR724014
  17. [17] Liu Y., Instability of solitary waves for generalized Boussinesq equations, J. Dynam. Differential Equations5 (1993) 537-558. Zbl0784.34048MR1235042
  18. [18] Liu Y., Instability and blow-up of solutions to a generalized Boussinesq equation, SIAM J. Math. Anal.26 (1995) 1527-1546. Zbl0857.35103MR1356458
  19. [19] Liu Y., Strong instability of solitary-wave solutions of a generalized Boussinesq equation, J. Differential Equations164 (2000) 223-239. Zbl0973.35163MR1765555
  20. [20] Liu Y., Blow up and instability of solitary-wave solutions to a generalized Kadomtsev–Petviashvili equation, Trans. Amer. Math. Soc.353 (2000) 191-208. Zbl0949.35120
  21. [21] Liu Y., Strong instability of solitary-wave solutions to a Kadomtsev–Petviashvili equation in three dimensions, J. Differential Equations180 (2002) 153-170. Zbl1061.35115
  22. [22] Ohta M., Todorova G., Strong instability of standing waves for nonlinear Klein–Gordon equations, Discrete Contin. Dynam. Syst.12 (2005) 315-322. Zbl1065.35198
  23. [23] M. Ohta, G. Todorova, Strong instability of standing waves for nonlinear Klein–Gordon equation and Klein–Gordon–Zakharov system, Preprint. Zbl1065.35198
  24. [24] Payne L.E., Sattinger D.H., Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math.22 (1975) 273-303. Zbl0317.35059MR402291
  25. [25] Shatah J., Stable standing waves of nonlinear Klein–Gordon equations, Comm. Math. Phys.91 (1983) 313-327. Zbl0539.35067
  26. [26] Shatah J., Unstable ground state of nonlinear Klein–Gordon equations, Trans. Amer. Math. Soc.290 (1985) 701-710. Zbl0617.35072
  27. [27] Shatah J., Strauss W., Instability of nonlinear bound states, Comm. Math. Phys.100 (1985) 173-190. Zbl0603.35007MR804458
  28. [28] Strauss W., Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1977) 149-162. Zbl0356.35028MR454365
  29. [29] Weinstein M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys.87 (1983) 567-576. Zbl0527.35023MR691044
  30. [30] Weinstein M.I., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math.39 (1986) 51-68. Zbl0594.35005MR820338

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.