Relaxation theorems in nonlinear elasticity

Omar Anza Hafsa; Jean-Philippe Mandallena

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 1, page 135-148
  • ISSN: 0294-1449

How to cite

top

Anza Hafsa, Omar, and Mandallena, Jean-Philippe. "Relaxation theorems in nonlinear elasticity." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 135-148. <http://eudml.org/doc/78776>.

@article{AnzaHafsa2008,
author = {Anza Hafsa, Omar, Mandallena, Jean-Philippe},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {determinant condition; infinite energy},
language = {eng},
number = {1},
pages = {135-148},
publisher = {Elsevier},
title = {Relaxation theorems in nonlinear elasticity},
url = {http://eudml.org/doc/78776},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Anza Hafsa, Omar
AU - Mandallena, Jean-Philippe
TI - Relaxation theorems in nonlinear elasticity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 135
EP - 148
LA - eng
KW - determinant condition; infinite energy
UR - http://eudml.org/doc/78776
ER -

References

top
  1. [1] Anza Hafsa O., Mandallena J.-P., Relaxation of variational problems in two-dimensional nonlinear elasticity, Ann. Mat. Pura Appl.186 (2007) 187-198. Zbl1232.49015MR2263896
  2. [2] Anza Hafsa O., Mandallena J.-P., The nonlinear membrane energy: variational derivation under the constraint “ det u 0 ”, J. Math. Pures Appl.86 (2006) 100-115. Zbl1114.35003MR2247453
  3. [3] O. Anza Hafsa, J.-P. Mandallena, The nonlinear membrane energy: variational derivation under the constraint “ det u g t ; 0 ”, submitted for publication. Zbl1148.35004
  4. [4] Ball J.M., Murat F., W 1 , p -quasiconvexity and variational problems for multiple integrals, J. Funct. Anal.58 (1984) 225-253. Zbl0549.46019MR759098
  5. [5] Ben Belgacem H., Relaxation of singular functionals defined on Sobolev spaces, ESAIM Control Optimal Calc. Var.5 (2000) 71-85. Zbl0936.49008MR1745687
  6. [6] Buttazzo G., Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations, Pitman Res., Notes Math. Ser., vol. 207, Longman, Harlow, 1989. Zbl0669.49005
  7. [7] Carbone L., De Arcangelis R., Unbounded Functionals in the Calculus of Variations: Representation, Relaxation and Homogenization, Chapman & Hall/CRC, 2001. Zbl1002.49018MR1910459
  8. [8] Dacorogna B., Quasiconvexity and relaxation of nonconvex problems in the calculus of variations, J. Funct. Anal.46 (1982) 102-118. Zbl0547.49003MR654467
  9. [9] Dacorogna B., Direct Methods in the Calculus of Variations, Springer, Berlin, 1989. Zbl0703.49001MR990890
  10. [10] Ekeland I., Temam R., Analyse convexe et problèmes variationnels, Dunod, Gauthier-Villars, Paris, 1974. Zbl0281.49001MR463993
  11. [11] Fonseca I., The lower quasiconvex envelope of the stored energy function for an elastic crystal, J. Math. Pures Appl.67 (1988) 175-195. Zbl0718.73075MR949107
  12. [12] Marsden J.E., Hughes T.J.R., Mathematical Foundations of Elasticity, Prentice-Hall, 1983. Zbl0545.73031
  13. [13] Morrey C.B., Quasiconvexity and lower semicontinuity of multiple integrals, Pacific J. Math.2 (1952) 25-53. Zbl0046.10803MR54865

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.