Relaxation theorems in nonlinear elasticity
Omar Anza Hafsa; Jean-Philippe Mandallena
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 1, page 135-148
- ISSN: 0294-1449
Access Full Article
topHow to cite
topReferences
top- [1] Anza Hafsa O., Mandallena J.-P., Relaxation of variational problems in two-dimensional nonlinear elasticity, Ann. Mat. Pura Appl.186 (2007) 187-198. Zbl1232.49015MR2263896
- [2] Anza Hafsa O., Mandallena J.-P., The nonlinear membrane energy: variational derivation under the constraint “”, J. Math. Pures Appl.86 (2006) 100-115. Zbl1114.35003MR2247453
- [3] O. Anza Hafsa, J.-P. Mandallena, The nonlinear membrane energy: variational derivation under the constraint “”, submitted for publication. Zbl1148.35004
- [4] Ball J.M., Murat F., -quasiconvexity and variational problems for multiple integrals, J. Funct. Anal.58 (1984) 225-253. Zbl0549.46019MR759098
- [5] Ben Belgacem H., Relaxation of singular functionals defined on Sobolev spaces, ESAIM Control Optimal Calc. Var.5 (2000) 71-85. Zbl0936.49008MR1745687
- [6] Buttazzo G., Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations, Pitman Res., Notes Math. Ser., vol. 207, Longman, Harlow, 1989. Zbl0669.49005
- [7] Carbone L., De Arcangelis R., Unbounded Functionals in the Calculus of Variations: Representation, Relaxation and Homogenization, Chapman & Hall/CRC, 2001. Zbl1002.49018MR1910459
- [8] Dacorogna B., Quasiconvexity and relaxation of nonconvex problems in the calculus of variations, J. Funct. Anal.46 (1982) 102-118. Zbl0547.49003MR654467
- [9] Dacorogna B., Direct Methods in the Calculus of Variations, Springer, Berlin, 1989. Zbl0703.49001MR990890
- [10] Ekeland I., Temam R., Analyse convexe et problèmes variationnels, Dunod, Gauthier-Villars, Paris, 1974. Zbl0281.49001MR463993
- [11] Fonseca I., The lower quasiconvex envelope of the stored energy function for an elastic crystal, J. Math. Pures Appl.67 (1988) 175-195. Zbl0718.73075MR949107
- [12] Marsden J.E., Hughes T.J.R., Mathematical Foundations of Elasticity, Prentice-Hall, 1983. Zbl0545.73031
- [13] Morrey C.B., Quasiconvexity and lower semicontinuity of multiple integrals, Pacific J. Math.2 (1952) 25-53. Zbl0046.10803MR54865