Relaxation of singular functionals defined on Sobolev spaces
ESAIM: Control, Optimisation and Calculus of Variations (2000)
- Volume: 5, page 71-85
- ISSN: 1292-8119
Access Full Article
topHow to cite
topBen Belgacem, Hafedh. "Relaxation of singular functionals defined on Sobolev spaces." ESAIM: Control, Optimisation and Calculus of Variations 5 (2000): 71-85. <http://eudml.org/doc/90585>.
@article{BenBelgacem2000,
author = {Ben Belgacem, Hafedh},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {rank-one convexity; quasiconvexity; weak lower semicontinuity; relaxation; integral functional},
language = {eng},
pages = {71-85},
publisher = {EDP Sciences},
title = {Relaxation of singular functionals defined on Sobolev spaces},
url = {http://eudml.org/doc/90585},
volume = {5},
year = {2000},
}
TY - JOUR
AU - Ben Belgacem, Hafedh
TI - Relaxation of singular functionals defined on Sobolev spaces
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2000
PB - EDP Sciences
VL - 5
SP - 71
EP - 85
LA - eng
KW - rank-one convexity; quasiconvexity; weak lower semicontinuity; relaxation; integral functional
UR - http://eudml.org/doc/90585
ER -
References
top- [1] E. Acerbi, G. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string. J. Elasticity 25 ( 1991) 137-148. Zbl0734.73094MR1111364
- [2] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 ( 1984) 125-145. Zbl0565.49010MR751305
- [3] G. Anzellotti, S. Baldo and D. Percivale, Dimension reduction in variational problems, asymptotic development in Γ-convergence, and thin structures in elasticity. Asymptot. Anal 9 ( 1994) 61-100. Zbl0811.49020MR1285017
- [4] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 ( 1977) 337-403. Zbl0368.73040MR475169
- [5] J.M. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 ( 1984) 225-253. Zbl0549.46019MR759098
- [6] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 ( 1987) 13-52. Zbl0629.49020MR906132
- [7] H. Ben Belgacem, Une méthode de Γ-convergence pour un modèle de membrane non linéaire. C. R. Acad. Sci. Paris. Sér. I Math. ( 1996) 845-849. Zbl0878.73005MR1446591
- [8] H. Ben Belgacem, Modélisation de structures minces en élasticité non linéaire. Thèse de l'Université Pierre et Marie Curie, Paris ( 1996).
- [9] G. Bouchitté, I. Fonseca and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Sect. A 128( 1998) 463-479. Zbl0907.49008MR1632814
- [10] P.G. Ciarlet, Mathematical Elasticity. Vol. I: Three-dimensional Elasticity. North-Holland, Amesterdam ( 1988). Zbl0648.73014MR936420
- [11] B. Dacorogna, Quasiconvexity and relaxation of non convex problems in the calculus of variations. J. Funct. Anal. 46 ( 1982) 102-118. Zbl0547.49003MR654467
- [12] B. Dacorogna, Remarques sur les notions de polyconvexité, quasiconvexité et convexité de rang 1. J. Math. Pures Appl. 64 ( 1985) 403-438. Zbl0609.49007MR839729
- [13] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, Appl. Math. Sci. 78 ( 1989. Zbl0703.49001MR990890
- [14] B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectoriel cases. Acta Math. 178 ( 1997) 1-37. Zbl0901.49027MR1448710
- [15] I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod, Paris ( 1974). Zbl0281.49001MR463993
- [16] I. Fonseca, The lower quasiconvex envelope of the stored energy for an elastic crystal. J. Math. Pures Appl. 67 ( 1988) 175-195. Zbl0718.73075MR949107
- [17] I. Fonseca, Variational techniques for problems in materials science. Progr. Nonlinear Differential Equations Appl. 25 ( 1996) 162-175. Zbl0871.49016MR1414499
- [18] I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent. Ann. Inst. H. Poincaré 14 ( 1997) 309-338. Zbl0868.49011MR1450951
- [19] R.V. Kohn and G. Strang, Explicit relaxation of a variational problem in optimal design. Bull. Amer. Math. Soc. 9 ( 1983) 211-214. Zbl0527.49002MR707959
- [20] R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems I, II and III. Comm. Pure Appl. Math. 39 ( 1986) 113-137, 139-182, 353-377. Zbl0621.49008MR820342
- [21] H. Le Dret and A. Raoult, Le modèle de membrane non linéaire comme limite variationnelle de l'élasticité non linéaire tridimensionnelle. C. R. Acad. Sci. Paris Sér. I Math. ( 1993) 221-226. Zbl0781.73037MR1231426
- [22] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of three-dimensional nonlinear elasticity. J. Math. Pures Appl. 74 ( 1995) 549-578. Zbl0847.73025MR1365259
- [23] P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manuscripta Math. 51 ( 1985) 1-28. Zbl0573.49010MR788671
- [24] P. Marcellini, On the definition and weak lower semicontinuity of certain quasiconvex integrals. Ann. Inst. H. Poincaré 3 ( 1986) 391-409. Zbl0609.49009MR868523
- [25] C.B. Jr. Morrey, Quasi-convexity and the lower semi-continuity of multiple integrals. Pacific J. Math. 2 ( 1952) 25-53. Zbl0046.10803MR54865
- [26] C.B. Jr. Morrey, Multiple Integrals in the Calculus of Variations. Springer, Berlin ( 1966). Zbl0142.38701MR202511
- [27] S. Müller, Variational models for microstructure and phase transitions, to appear in Proc. C.I.M.E. summer school "Calculus of variations and geometrie evolution problems". Cetraro ( 1996). Zbl0968.74050MR1731640
- [28] R.W. Ogden, Large deformation isotropic elasticity: On the correlation of the theory and experiment for compressible rubberlike solids. Proc. Roy. Soc. London Ser. A 328 ( 1972). Zbl0245.73032
- [29] E.T. Rockafellar, Convex Analysis. Princeton University Press ( 1970). Zbl0193.18401MR274683
- [30] L. Tartar, Compensated Compactness and Applications to Partial Differential Equations, in Nonlinear Analysis and Mechanics, Heriot-Watt Symp. Vol. IV, R.J. Knops Ed. Pitman, London ( 1979). Zbl0437.35004MR584398
- [31] V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems. C. R. Acad. Sci. Paris Sér. I Math. ( 1993) 435-439. Zbl0783.35005MR1209262
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.