Energies of S 2 -valued harmonic maps on polyhedra with tangent boundary conditions

A. Majumdar; J. M. Robbins; M. Zyskin

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 1, page 77-103
  • ISSN: 0294-1449

How to cite

top

Majumdar, A., Robbins, J. M., and Zyskin, M.. "Energies of ${S}^{2}$-valued harmonic maps on polyhedra with tangent boundary conditions." Annales de l'I.H.P. Analyse non linéaire 25.1 (2008): 77-103. <http://eudml.org/doc/78784>.

@article{Majumdar2008,
author = {Majumdar, A., Robbins, J. M., Zyskin, M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {harmonic maps with defects; minimal connection; bistability},
language = {eng},
number = {1},
pages = {77-103},
publisher = {Elsevier},
title = {Energies of $\{S\}^\{2\}$-valued harmonic maps on polyhedra with tangent boundary conditions},
url = {http://eudml.org/doc/78784},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Majumdar, A.
AU - Robbins, J. M.
AU - Zyskin, M.
TI - Energies of ${S}^{2}$-valued harmonic maps on polyhedra with tangent boundary conditions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 1
SP - 77
EP - 103
LA - eng
KW - harmonic maps with defects; minimal connection; bistability
UR - http://eudml.org/doc/78784
ER -

References

top
  1. [1] Abramowitz M., Stegun I.A., Handbook of Mathematical Functions, Dover Publications, 1965. Zbl0171.38503
  2. [2] Birkhoff G., Tres observaciones sobre el algebra lineal, Univ. Nac. Tacumán Rev. Ser. A5 (1946) 147-151. Zbl0060.07906MR20547
  3. [3] Brezis H., The interplay between analysis and topology in some nonlinear PDE problems, Bull. Amer. Math. Soc.40 (2006) 179-201. Zbl1161.35354MR1962295
  4. [4] Brezis H., Coron J.-M., Lieb E.H., Harmonic maps with defects, Comm. Math. Phys.107 (1986) 649-705. Zbl0608.58016MR868739
  5. [5] Davidson A.J., Mottram N.J., Flexoelectric switching in a bistable nematic device, Phys. Rev. E65 (2002) 051710. 
  6. [6] de Gennes P.-G., Prost J., The Physics of Liquid Crystals, second ed., Oxford University Press, 1995. 
  7. [7] Denniston C., Yeomans J.M., Flexoelectric surface switching of bistable nematic devices, Phys. Rev. Lett.87 (2001) 275505. 
  8. [8] Eells J., Fuglede B., Harmonic Maps Between Riemannian Polyhedra, Cambridge Tracts in Mathematics, vol. 142, Cambridge University Press, 2001. Zbl0979.31001MR1848068
  9. [9] Gromov M., Schoen R., Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publ. IHES76 (1992) 165-246. Zbl0896.58024MR1215595
  10. [10] Hardt R.M., Singularities of harmonic maps, Bull. Amer. Math. Soc.34 (1997) 15-34. Zbl0871.58026MR1397098
  11. [11] J.C. Jones, J.R. Hughes, A. Graham, P. Brett, G.P. Bryan-Brown, E.L. Wood, Zenithal bistable devices: Towards the electronic book with a simple LCD, In: Proc IDW, 2000, pp. 301–304. 
  12. [12] Kitson S., Geisow A., Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states, Appl. Phys. Lett.80 (2002) 3635-3637. 
  13. [13] Kléman M., Points, Lines and Walls, John Wiley and Sons, Chichester, 1983. MR734901
  14. [14] Kleman M., Lavrentovich O.D., Soft Condensed Matter, Springer, 2002. 
  15. [15] Lavrentovich O.D., Topological defects in dispersed liquid crystals, or words and worlds around liquid crystal drops, Liquid Crystals24 (1998) 117-125. 
  16. [16] Lin F.H., Poon C.C., On nematic liquid crystal droplets, in: Elliptic and Parabolic Methods in Geometry, A.K. Peters, 1996, pp. 91-121. Zbl0876.49038MR1417951
  17. [17] A. Majumdar, Liquid crystals and tangent unit-vector fields in polyhedral geometries, PhD thesis, University of Bristol, 2006. 
  18. [18] Majumdar A., Robbins J.M., Zyskin M., Elastic energy of liquid crystals in convex polyhedra, J. Phys. A37 (2004) L573-L580, J. Phys. A38 (2005) 7595. Zbl1064.58019MR2169580
  19. [19] Majumdar A., Robbins J.M., Zyskin M., Lower bound for energies of harmonic tangent unit-vector fields on convex polyhedra, Lett. Math. Phys.70 (2004) 169-183. Zbl1059.58009MR2109431
  20. [20] Majumdar A., Robbins J.M., Zyskin M., Elastic energy for reflection-symmetric topologies, J. Phys. A39 (2006) 2673-2687. Zbl1099.82019MR2213361
  21. [21] Majumdar A., Robbins J.M., Zyskin M., Topology and bistability in liquid crystal devices, math-ph/0611016. 
  22. [22] Mermin N.D., The topological theory of defects in ordered media, Rev. Mod. Phys.51 (C) (1979) 591-651. Zbl0711.55009MR541885
  23. [23] C.J.P. Newton, T.P. Spiller, Bistable nematic liquid crystal device modelling, In: Proc. 17th IDRC (SID), 1997, p. 13. 
  24. [24] Robbins J.M., Zyskin M., Classification of unit-vector fields in convex polyhedra with tangent boundary conditions, J. Phys. A37 (2004) 10609-10623. Zbl1138.58309MR2098054
  25. [25] Stewart I.W., The Static and Dynamic Continuum Theory of Liquid Crystals, Taylor and Francis, London, 2004. 
  26. [26] Virga E.G., Variational Theories for Liquid Crystals, Chapman and Hall, 1994. Zbl0814.49002MR1369095
  27. [27] Volovik G.E., Lavrentovich O.D., Topological dynamics of defects – boojums in nematic drops, Sov. Phys. JETP58 (1983) 1159. 
  28. [28] M. Zyskin, Homotopy classification of director fields on polyhedral domains with tangent and periodic boundary conditions, Preprint, 2005. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.