Reduced energy functionals for a three-dimensional fast rotating Bose Einstein condensates
Amandine Aftalion; Xavier Blanc
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 2, page 339-355
- ISSN: 0294-1449
Access Full Article
topHow to cite
topAftalion, Amandine, and Blanc, Xavier. "Reduced energy functionals for a three-dimensional fast rotating Bose Einstein condensates." Annales de l'I.H.P. Analyse non linéaire 25.2 (2008): 339-355. <http://eudml.org/doc/78792>.
@article{Aftalion2008,
author = {Aftalion, Amandine, Blanc, Xavier},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {rotating Bose-Einstein condensates; Gross-Pitaevskii energy; dimension reduction; lowest Landau level; vortex; elliptic PDEs; diamagnetic inequality},
language = {eng},
number = {2},
pages = {339-355},
publisher = {Elsevier},
title = {Reduced energy functionals for a three-dimensional fast rotating Bose Einstein condensates},
url = {http://eudml.org/doc/78792},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Aftalion, Amandine
AU - Blanc, Xavier
TI - Reduced energy functionals for a three-dimensional fast rotating Bose Einstein condensates
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 2
SP - 339
EP - 355
LA - eng
KW - rotating Bose-Einstein condensates; Gross-Pitaevskii energy; dimension reduction; lowest Landau level; vortex; elliptic PDEs; diamagnetic inequality
UR - http://eudml.org/doc/78792
ER -
References
top- [1] Abo-Shaeer J.R., Raman C., Vogels J.M., Ketterle W., Observation of vortex lattices in Bose–Einstein condensates, Science292 (2001) 476-479.
- [2] Aftalion A., Vortices in Bose Einstein Condensates, Progress in Nonlinear Differential Equations and Their Applications, vol. 67, Birkhäuser, 2006. Zbl1129.82004MR2228356
- [3] Aftalion A., Blanc X., Vortex lattices in rotating Bose Einstein condensates, SIAM Math. Anal.38 (2006) 874. Zbl1174.35104MR2262946
- [4] Aftalion A., Blanc X., Dalibard J., Vortex patterns in a fast rotating Bose–Einstein condensate, Phys. Rev. A71 (2005) 023611.
- [5] Aftalion A., Blanc X., Nier F., Lowest Landau level functional and Bargmann transform in Bose Einstein condensates, J. Funct. Anal.241 (2006) 661. Zbl1118.82004MR2271933
- [6] Aftalion A., Jerrard R.L., Properties of a single vortex solution in a rotating Bose Einstein condensate, C. R. Acad. Sci. Paris, Ser. I (2003) 336. Zbl1050.82502MR1988308
- [7] Aftalion A., Riviere T., Vortex energy and vortex bending for a rotating Bose–Einstein condensate, Phys. Rev. A64 (2001) 043611.
- [8] Bethuel F., Brezis H., Helein F., Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 13, Birkhäuser Boston, Inc., Boston, MA, 1994. Zbl0802.35142MR1269538
- [9] Bretin V., Stock S., Seurin Y., Dalibard J., Fast rotation of a Bose–Einstein condensate, Phys. Rev. Lett.92 (2004) 050403.
- [10] Brezis H., Semilinear equations in without condition at infinity, Appl. Math. Optim.12 (1984) 271-282. Zbl0562.35035MR768633
- [11] Coddington I., Haljan P.C., Engels P., Schweikhard V., Tung S., Cornell E.A., Experimental studies of equilibrium vortex properties in a Bose-condensed gas, Phys. Rev. A70 (2004) 063607.
- [12] Cooper N.R., Komineas S., Read N., Vortex lattices in the lowest Landau level for confined Bose–Einstein condensates, Phys. Rev. A70 (2004) 033604.
- [13] Cooper N.R., Wilkin N.K., Gunn J.M.F., Quantum phases of vortices in rotating Bose–Einstein condensates, Phys. Rev. Lett.87 (2001) 120405.
- [14] Engels P. et al. , Observation of long-lived vortex aggregates in rapidly rotating Bose–Einstein condensates, Phys. Rev. Lett.90 (2003) 170405.
- [15] Ho T.L., Bose–Einstein condensates with large number of vortices, Phys. Rev. Lett.87 (2001) 060403.
- [16] Kleiner W.H., Roth L.M., Autler S.H., Bulk solution of Ginzburg–Landau equations for type II superconductors: Upper critical field region, Phys. Rev.133 (1964) A1226. Zbl0115.45605
- [17] Lieb E., Loss M., Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, 1997. Zbl0873.26002MR1415616
- [18] Lieb E., Seiringer R., Derivation of the Gross–Pitaevskii equation for rotating Bose gases, Comm. Math. Phys.264 (2006) 505. Zbl1233.82004MR2215615
- [19] Lieb E., Seiringer R., Yngvason J., Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional, Phys. Rev. A61 (2000) 0436021. Zbl1043.82515
- [20] Lu K., Pan X.B., Eigenvalue problem of Ginzburg–Landau operator in bounded domains, J. Math. Phys.40 (1999) 2647-2670. Zbl0943.35058MR1694223
- [21] Madison K., Chevy F., Bretin V., Dalibard J., Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett.84 (2000) 806.
- [22] Matthews M.R. et al. , Vortices in a Bose–Einstein condensate, Phys. Rev. Lett.83 (1999) 2498.
- [23] Olshanii M., Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett.81 (1998) 938-941.
- [24] Pitaevskii L., Stringari S., Bose–Einstein Condensation, Oxford University Press, Oxford, 2003. Zbl1110.82002MR2012737
- [25] Raman C., Abo-Shaeer J.R., Vogels J.M., Xu K., Ketterle W., Vortex nucleation in a stirred Bose–Einstein condensate, Phys. Rev. Lett.87 (2001) 210402.
- [26] Schnee K., Yngvason J., Bosons in disc-shaped traps: From 3D to 2D, preprint, math-ph/0510006. Zbl1122.82004MR2276357
- [27] Schweikhard V., Coddington I., Engels P., Mogendorff V.P., Cornell E.A., Rapidly rotating Bose–Einstein condensates in and near the lowest Landau level, Phys. Rev. Lett.92 (2004) 040404.
- [28] Stock S., Bretin V., Chevy F., Dalibard J., Shape oscillation of a rotating Bose–Einstein condensate, Europhys. Lett.65 (2004) 594.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.