Reduced energy functionals for a three-dimensional fast rotating Bose Einstein condensates

Amandine Aftalion; Xavier Blanc

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 2, page 339-355
  • ISSN: 0294-1449

How to cite

top

Aftalion, Amandine, and Blanc, Xavier. "Reduced energy functionals for a three-dimensional fast rotating Bose Einstein condensates." Annales de l'I.H.P. Analyse non linéaire 25.2 (2008): 339-355. <http://eudml.org/doc/78792>.

@article{Aftalion2008,
author = {Aftalion, Amandine, Blanc, Xavier},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {rotating Bose-Einstein condensates; Gross-Pitaevskii energy; dimension reduction; lowest Landau level; vortex; elliptic PDEs; diamagnetic inequality},
language = {eng},
number = {2},
pages = {339-355},
publisher = {Elsevier},
title = {Reduced energy functionals for a three-dimensional fast rotating Bose Einstein condensates},
url = {http://eudml.org/doc/78792},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Aftalion, Amandine
AU - Blanc, Xavier
TI - Reduced energy functionals for a three-dimensional fast rotating Bose Einstein condensates
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 2
SP - 339
EP - 355
LA - eng
KW - rotating Bose-Einstein condensates; Gross-Pitaevskii energy; dimension reduction; lowest Landau level; vortex; elliptic PDEs; diamagnetic inequality
UR - http://eudml.org/doc/78792
ER -

References

top
  1. [1] Abo-Shaeer J.R., Raman C., Vogels J.M., Ketterle W., Observation of vortex lattices in Bose–Einstein condensates, Science292 (2001) 476-479. 
  2. [2] Aftalion A., Vortices in Bose Einstein Condensates, Progress in Nonlinear Differential Equations and Their Applications, vol. 67, Birkhäuser, 2006. Zbl1129.82004MR2228356
  3. [3] Aftalion A., Blanc X., Vortex lattices in rotating Bose Einstein condensates, SIAM Math. Anal.38 (2006) 874. Zbl1174.35104MR2262946
  4. [4] Aftalion A., Blanc X., Dalibard J., Vortex patterns in a fast rotating Bose–Einstein condensate, Phys. Rev. A71 (2005) 023611. 
  5. [5] Aftalion A., Blanc X., Nier F., Lowest Landau level functional and Bargmann transform in Bose Einstein condensates, J. Funct. Anal.241 (2006) 661. Zbl1118.82004MR2271933
  6. [6] Aftalion A., Jerrard R.L., Properties of a single vortex solution in a rotating Bose Einstein condensate, C. R. Acad. Sci. Paris, Ser. I (2003) 336. Zbl1050.82502MR1988308
  7. [7] Aftalion A., Riviere T., Vortex energy and vortex bending for a rotating Bose–Einstein condensate, Phys. Rev. A64 (2001) 043611. 
  8. [8] Bethuel F., Brezis H., Helein F., Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 13, Birkhäuser Boston, Inc., Boston, MA, 1994. Zbl0802.35142MR1269538
  9. [9] Bretin V., Stock S., Seurin Y., Dalibard J., Fast rotation of a Bose–Einstein condensate, Phys. Rev. Lett.92 (2004) 050403. 
  10. [10] Brezis H., Semilinear equations in R N without condition at infinity, Appl. Math. Optim.12 (1984) 271-282. Zbl0562.35035MR768633
  11. [11] Coddington I., Haljan P.C., Engels P., Schweikhard V., Tung S., Cornell E.A., Experimental studies of equilibrium vortex properties in a Bose-condensed gas, Phys. Rev. A70 (2004) 063607. 
  12. [12] Cooper N.R., Komineas S., Read N., Vortex lattices in the lowest Landau level for confined Bose–Einstein condensates, Phys. Rev. A70 (2004) 033604. 
  13. [13] Cooper N.R., Wilkin N.K., Gunn J.M.F., Quantum phases of vortices in rotating Bose–Einstein condensates, Phys. Rev. Lett.87 (2001) 120405. 
  14. [14] Engels P. et al. , Observation of long-lived vortex aggregates in rapidly rotating Bose–Einstein condensates, Phys. Rev. Lett.90 (2003) 170405. 
  15. [15] Ho T.L., Bose–Einstein condensates with large number of vortices, Phys. Rev. Lett.87 (2001) 060403. 
  16. [16] Kleiner W.H., Roth L.M., Autler S.H., Bulk solution of Ginzburg–Landau equations for type II superconductors: Upper critical field region, Phys. Rev.133 (1964) A1226. Zbl0115.45605
  17. [17] Lieb E., Loss M., Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, 1997. Zbl0873.26002MR1415616
  18. [18] Lieb E., Seiringer R., Derivation of the Gross–Pitaevskii equation for rotating Bose gases, Comm. Math. Phys.264 (2006) 505. Zbl1233.82004MR2215615
  19. [19] Lieb E., Seiringer R., Yngvason J., Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional, Phys. Rev. A61 (2000) 0436021. Zbl1043.82515
  20. [20] Lu K., Pan X.B., Eigenvalue problem of Ginzburg–Landau operator in bounded domains, J. Math. Phys.40 (1999) 2647-2670. Zbl0943.35058MR1694223
  21. [21] Madison K., Chevy F., Bretin V., Dalibard J., Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett.84 (2000) 806. 
  22. [22] Matthews M.R. et al. , Vortices in a Bose–Einstein condensate, Phys. Rev. Lett.83 (1999) 2498. 
  23. [23] Olshanii M., Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett.81 (1998) 938-941. 
  24. [24] Pitaevskii L., Stringari S., Bose–Einstein Condensation, Oxford University Press, Oxford, 2003. Zbl1110.82002MR2012737
  25. [25] Raman C., Abo-Shaeer J.R., Vogels J.M., Xu K., Ketterle W., Vortex nucleation in a stirred Bose–Einstein condensate, Phys. Rev. Lett.87 (2001) 210402. 
  26. [26] Schnee K., Yngvason J., Bosons in disc-shaped traps: From 3D to 2D, preprint, math-ph/0510006. Zbl1122.82004MR2276357
  27. [27] Schweikhard V., Coddington I., Engels P., Mogendorff V.P., Cornell E.A., Rapidly rotating Bose–Einstein condensates in and near the lowest Landau level, Phys. Rev. Lett.92 (2004) 040404. 
  28. [28] Stock S., Bretin V., Chevy F., Dalibard J., Shape oscillation of a rotating Bose–Einstein condensate, Europhys. Lett.65 (2004) 594. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.