Adiabatic approximation for a two-level atom in a light beam
Amandine Aftalion[1]; Francis Nier[2]
- [1] CNRS & Université Versailles-Saint-Quentin-en-Yvelines, Laboratoire de Mathématiques de Versailles, CNRS UMR 8100, 45 avenue des États-Unis, 78035 Versailles Cedex, France
- [2] IRMAR, Université de Rennes 1, 35042 Rennes Cedex, France. 2) CERMICS, INRIA project-team MICMAC
Annales de la faculté des sciences de Toulouse Mathématiques (2013)
- Volume: 22, Issue: 1, page 43-131
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topAftalion, Amandine, and Nier, Francis. "Adiabatic approximation for a two-level atom in a light beam." Annales de la faculté des sciences de Toulouse Mathématiques 22.1 (2013): 43-131. <http://eudml.org/doc/275295>.
@article{Aftalion2013,
abstract = {Following the recent experimental realization of synthetic gauge potentials, Jean Dalibard addressed the question whether the adiabatic ansatz could be mathematically justified for a model of an atom in 2 internal states, shone by a quasi resonant laser beam. In this paper, we derive rigorously the asymptotic model guessed by the physicists, and show that this asymptotic analysis contains the information about the presence of vortices. Surprisingly, the main difficulties do not come from the nonlinear part but from the linear Hamiltonian. More precisely, the analysis of the nonlinear minimization problem, and its asymptotic reduction to simpler ones, relies on an accurate partition of low and high frequencies (or momenta). This requires to reconsider carefully previous mathematical works about the adiabatic limit. Although the estimates are not sharp, this asymptotic analysis provides a good insight about the validity of the asymptotic picture, with respect to the size of the many parameters initially put in the complete model.},
affiliation = {CNRS & Université Versailles-Saint-Quentin-en-Yvelines, Laboratoire de Mathématiques de Versailles, CNRS UMR 8100, 45 avenue des États-Unis, 78035 Versailles Cedex, France; IRMAR, Université de Rennes 1, 35042 Rennes Cedex, France. 2) CERMICS, INRIA project-team MICMAC},
author = {Aftalion, Amandine, Nier, Francis},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {resonant atom-field interactions; vortices; synthetic gauge potentials},
language = {eng},
month = {6},
number = {1},
pages = {43-131},
publisher = {Université Paul Sabatier, Toulouse},
title = {Adiabatic approximation for a two-level atom in a light beam},
url = {http://eudml.org/doc/275295},
volume = {22},
year = {2013},
}
TY - JOUR
AU - Aftalion, Amandine
AU - Nier, Francis
TI - Adiabatic approximation for a two-level atom in a light beam
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2013/6//
PB - Université Paul Sabatier, Toulouse
VL - 22
IS - 1
SP - 43
EP - 131
AB - Following the recent experimental realization of synthetic gauge potentials, Jean Dalibard addressed the question whether the adiabatic ansatz could be mathematically justified for a model of an atom in 2 internal states, shone by a quasi resonant laser beam. In this paper, we derive rigorously the asymptotic model guessed by the physicists, and show that this asymptotic analysis contains the information about the presence of vortices. Surprisingly, the main difficulties do not come from the nonlinear part but from the linear Hamiltonian. More precisely, the analysis of the nonlinear minimization problem, and its asymptotic reduction to simpler ones, relies on an accurate partition of low and high frequencies (or momenta). This requires to reconsider carefully previous mathematical works about the adiabatic limit. Although the estimates are not sharp, this asymptotic analysis provides a good insight about the validity of the asymptotic picture, with respect to the size of the many parameters initially put in the complete model.
LA - eng
KW - resonant atom-field interactions; vortices; synthetic gauge potentials
UR - http://eudml.org/doc/275295
ER -
References
top- Aftalion (A.).— Vortices in Bose-Einstein Condensates. Progress in Nonlinear Differential Equations and their Applications, Vol 67 Birhkaüser (2006). Zbl1129.82004MR2228356
- Aftalion (A.), Blanc (X.).— Reduced energy functionals for a three dimensional fast rotating Bose Einstein condensates. Ann. Inst. H. Poincaré Anal. Non Linéaire 25 no. 2, p. 339-355 (2008). Zbl1202.82010MR2400105
- Aftalion (A.), Blanc (X.), Nier (F.).— Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates. J. Funct. Anal. 241 no. 2, p. 661-702 (2006). Zbl1118.82004MR2271933
- Aftalion (A.), Jerrard (R. L.), Royo-Letelier (J.).— Non existence of vortices in the small density region of a condensate J. Funct. Anal., vol. 260, no. 8, p. 2387-2406 (2011). Zbl1220.82006MR2772375
- Balazard-Konlein (A.).— Calcul fonctionnel pour des opérateurs -admissible à symbole opérateur et applications. ph-D, Université de Nantes, (1985). Zbl0601.35089
- Bochnak (J.), Coste (M.), Roy (M. F.).— Géométrie algébrique réelle. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 12 Springer-Verlag (1987). Zbl0633.14016MR949442
- Bolte (J.), Daniilidis (A.), Ley (O.), Mazet (L.).— Characterizations of Lojasiewicz inequalities and applications: subgradient flows, talweg, convexity. Math. Oper. Res. 36 no. 1, p. 55-70 (2011). Zbl1218.90189MR2799393
- Bony (J.M.), Chemin (J.Y.).— Espaces fonctionnels associés au calcul de Weyl-Hörmander. Bull. Soc. Math. France, 122 no 1, p. 77-118 (1994). Zbl0798.35172MR1259109
- Born (M.), Fock (V.).— Beweis des Adiabatensatzes. Zeitschrift für Physik 51, p. 165-169 (1928).
- Bony (J.M.), Lerner (N.).— Quantification asymptotique et microlocalisation d’ordre supérieur I. Ann. Scient. Ec. Norm. Sup., série 22, p. 377-433 (1989). Zbl0753.35005MR1011988
- Born (M.), Oppenheimer (R.).— Zur Quantentheorie der Molekeln. Ann. Phys. (Leipzig) 84, p. 457-484 (1927). Zbl53.0845.04
- Brezis (H.), Oswald (L.).— Remarks on sublinear elliptic equations, Nonlinear Analysis 10, p. 55-64 (1986). Zbl0593.35045MR820658
- Carles (R.), Fermanian (C.).— A nonlinear adiabatic theorem for coherent states. Nonlinearity 24 no. 8, p. 2143-2164 (2011). Zbl1231.81040MR2813581
- Cycon (H.L.), Froese (R.G.), Kirsch (W.), Simon (B.).— Schrödinger operators with application to quantum mechanics and global geometry. Texts and Monographs in Physics. Springer Study Edition. Springer-Verlag (1987). Zbl0619.47005MR883643
- Chill (R.).— On the Lojasiewicz-Simon gradient inequality. J. Funct. Anal. 201 no. 10, p. 572-601 (2003). Zbl1036.26015MR1986700
- Cooper (N.R.).— Rapidly Rotating Atomic Gases Advances in Physics 57, p. 539 (2008).
- Dalibard (J.), Gerbier (F.), Juzeliunas (G.), Öhberg (P.).— Artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, p. 1523 (2011).
- Fetter (A.L.).— Rotating trapped Bose-Einstein condensates Rev. Mod. Phys. 81, p. 647 (2009).
- Lin (Y.L.), Compton (R.L.), Garcia (K.J.), Porto (J.V.), Spielman (I.B.).— Synthetic magnetic fields for ultracold neutral atoms Nature 462, p. 628 (2009).
- Günter (K.J.), Cheneau (M.), Yefsah (T.), Rath (S.P.), Dalibard (J.).— Practical scheme for a light-induced gauge field in an atomic Bose gas. Phys. Rev. A 79, p. 011604(R) (2009).
- Haraux (A.), Jendoubi (M.A.).— The Lojasiewicz gradient inequality in the infinite-dimensional Hilbert space framework. J. Funct. Anal. 260 no. 9, p. 2826-2842 (2011). Zbl1222.47089MR2772353
- Hitrik (M.), Pravda-Starov (K.).— Spectra and semigroup smoothing for non-elliptic quadratic operators. Mathematische Annalen, 344, no.4, p. 801-846 (2009). Zbl1171.47038MR2507625
- Hörmander (H.).— The analysis of linear partial differential operators. Springer Verlag (1985). Zbl0601.35001
- Huang (S.Z.).— Gradient inequalities. With applications to asymptotic behavior and stability of gradient-like systems. Mathematical Surveys and Monographs, 126. Am. Math. Soc. (2006). Zbl1132.35002MR2226672
- Kato (T.).— Perturbation theory for linear operators. Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, (1995). Zbl0836.47009MR1335452
- Lieb (E.H.), Seiringer (R.).— Derivation of the Gross-Pitaevskii Equation for Rotating Bose Gases. Commun. Math. Phys. 264, p. 505-537 (2006). Zbl1233.82004MR2215615
- Lojasiewicz (S.).— Une propriété topologique des sous-ensembles analytiques réels. Les Equations aux Dérivées Partielles, p. 87-89, Editions du centre National de la Recherche Scientifique (1963). Zbl0234.57007MR160856
- Madison (K.W.), Chevy (F.), Wohlleben (W.), Dalibard (J.).— Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84, p. 806 (2000).
- Madison (K.W.), Chevy (F.), Wohlleben (W.), Dalibard (J.).— Vortices in a stirred Bose-Einstein condensate Jour. Mod. Optics 47, p. 2715 (2000).
- Martinez (A.), Sordoni (V.).— A general reduction scheme for the time-dependent Born-Oppenheimer approximation. C.R. Acad. Sci. Paris Ser. I, 334, p. 185-188 (2002). Zbl1079.81524MR1891055
- Martinez (A.), Sordoni (V.).— Twisted Pseudodifferential Calculus and Application to the Quantum Evolution of Molecules. Mem. Amer. Math. Soc. 200 no. 936 (2009). Zbl1179.35357MR2527490
- Nataf (F.), Nier (F.).— Convergence of domain decomposition methods via semi-classical calculus. Comm. Partial Differential Equations 23 no. 5-6, p. 1007-1059 (1998). Zbl0909.35007MR1632788
- Nenciu (G.), Sordoni (V.).— Semiclassical limit for multistate Klein-Gordon systems: almost invariant subspaces, and scattering theory. J. Math. Phys. 45 no. 9, p. 3676-3696 (2004). Zbl1071.81043MR2081813
- Nier (F.).— A propos des fonctions thêta et des réseaux d’Abrikosov. Séminaire Equations aux Dérivées Partielles. Ecole Polytechnique, Exp. No. XII (2006-2007). Zbl1171.33012MR2385199
- Nirenberg (L.).— On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13, p. 116-162 (1959). Zbl0088.07601MR109940
- Panati (G.), Spohn (H.), Teufel (S.).— Space adiabatic perturbation theory. Adv. Theor. Math. Phys. 7 no. 1, p. 145-204 (2003). MR2014961
- Panati (G.), Spohn (H.), Teufel (S.).— The time-dependent Born-Oppenheimer approximation. M2AN 45 no. 2, p. 297-314 (2007). Zbl1135.81338MR2339630
- Simon (L.).— Asymptotics for a class of non-linear evolution equations, with applications to geometric problems. Ann. of Math. 118, p. 525-571 (1983). Zbl0549.35071MR727703
- Sjöstrand (J.).— Parametrices for pseudodifferential operators with multiple characteristics. Ark. für Mat. 12 p. 85-130 (1974). Zbl0317.35076MR352749
- Sordoni (V.).— Reduction scheme for semiclassical operator-valued Schrödinger type equation and application to scattering. Comm. Partial Differential Equations 28 no. 7-8, p. 1221-1236 (2003). Zbl1274.35073MR1998936
- Taylor (M.).— Partial Differential Equations III, Nonlinear Equations. Applied Mathematical Sciences Vol. 117, Springer (1997). Zbl1206.35004MR1477408
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.