Adiabatic approximation for a two-level atom in a light beam
Amandine Aftalion[1]; Francis Nier[2]
- [1] CNRS & Université Versailles-Saint-Quentin-en-Yvelines, Laboratoire de Mathématiques de Versailles, CNRS UMR 8100, 45 avenue des États-Unis, 78035 Versailles Cedex, France
- [2] IRMAR, Université de Rennes 1, 35042 Rennes Cedex, France. 2) CERMICS, INRIA project-team MICMAC
Annales de la faculté des sciences de Toulouse Mathématiques (2013)
- Volume: 22, Issue: 1, page 43-131
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- Aftalion (A.).— Vortices in Bose-Einstein Condensates. Progress in Nonlinear Differential Equations and their Applications, Vol 67 Birhkaüser (2006). Zbl1129.82004MR2228356
- Aftalion (A.), Blanc (X.).— Reduced energy functionals for a three dimensional fast rotating Bose Einstein condensates. Ann. Inst. H. Poincaré Anal. Non Linéaire 25 no. 2, p. 339-355 (2008). Zbl1202.82010MR2400105
- Aftalion (A.), Blanc (X.), Nier (F.).— Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates. J. Funct. Anal. 241 no. 2, p. 661-702 (2006). Zbl1118.82004MR2271933
- Aftalion (A.), Jerrard (R. L.), Royo-Letelier (J.).— Non existence of vortices in the small density region of a condensate J. Funct. Anal., vol. 260, no. 8, p. 2387-2406 (2011). Zbl1220.82006MR2772375
- Balazard-Konlein (A.).— Calcul fonctionnel pour des opérateurs -admissible à symbole opérateur et applications. ph-D, Université de Nantes, (1985). Zbl0601.35089
- Bochnak (J.), Coste (M.), Roy (M. F.).— Géométrie algébrique réelle. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 12 Springer-Verlag (1987). Zbl0633.14016MR949442
- Bolte (J.), Daniilidis (A.), Ley (O.), Mazet (L.).— Characterizations of Lojasiewicz inequalities and applications: subgradient flows, talweg, convexity. Math. Oper. Res. 36 no. 1, p. 55-70 (2011). Zbl1218.90189MR2799393
- Bony (J.M.), Chemin (J.Y.).— Espaces fonctionnels associés au calcul de Weyl-Hörmander. Bull. Soc. Math. France, 122 no 1, p. 77-118 (1994). Zbl0798.35172MR1259109
- Born (M.), Fock (V.).— Beweis des Adiabatensatzes. Zeitschrift für Physik 51, p. 165-169 (1928).
- Bony (J.M.), Lerner (N.).— Quantification asymptotique et microlocalisation d’ordre supérieur I. Ann. Scient. Ec. Norm. Sup., série 22, p. 377-433 (1989). Zbl0753.35005MR1011988
- Born (M.), Oppenheimer (R.).— Zur Quantentheorie der Molekeln. Ann. Phys. (Leipzig) 84, p. 457-484 (1927). Zbl53.0845.04
- Brezis (H.), Oswald (L.).— Remarks on sublinear elliptic equations, Nonlinear Analysis 10, p. 55-64 (1986). Zbl0593.35045MR820658
- Carles (R.), Fermanian (C.).— A nonlinear adiabatic theorem for coherent states. Nonlinearity 24 no. 8, p. 2143-2164 (2011). Zbl1231.81040MR2813581
- Cycon (H.L.), Froese (R.G.), Kirsch (W.), Simon (B.).— Schrödinger operators with application to quantum mechanics and global geometry. Texts and Monographs in Physics. Springer Study Edition. Springer-Verlag (1987). Zbl0619.47005MR883643
- Chill (R.).— On the Lojasiewicz-Simon gradient inequality. J. Funct. Anal. 201 no. 10, p. 572-601 (2003). Zbl1036.26015MR1986700
- Cooper (N.R.).— Rapidly Rotating Atomic Gases Advances in Physics 57, p. 539 (2008).
- Dalibard (J.), Gerbier (F.), Juzeliunas (G.), Öhberg (P.).— Artificial gauge potentials for neutral atoms. Rev. Mod. Phys. 83, p. 1523 (2011).
- Fetter (A.L.).— Rotating trapped Bose-Einstein condensates Rev. Mod. Phys. 81, p. 647 (2009).
- Lin (Y.L.), Compton (R.L.), Garcia (K.J.), Porto (J.V.), Spielman (I.B.).— Synthetic magnetic fields for ultracold neutral atoms Nature 462, p. 628 (2009).
- Günter (K.J.), Cheneau (M.), Yefsah (T.), Rath (S.P.), Dalibard (J.).— Practical scheme for a light-induced gauge field in an atomic Bose gas. Phys. Rev. A 79, p. 011604(R) (2009).
- Haraux (A.), Jendoubi (M.A.).— The Lojasiewicz gradient inequality in the infinite-dimensional Hilbert space framework. J. Funct. Anal. 260 no. 9, p. 2826-2842 (2011). Zbl1222.47089MR2772353
- Hitrik (M.), Pravda-Starov (K.).— Spectra and semigroup smoothing for non-elliptic quadratic operators. Mathematische Annalen, 344, no.4, p. 801-846 (2009). Zbl1171.47038MR2507625
- Hörmander (H.).— The analysis of linear partial differential operators. Springer Verlag (1985). Zbl0601.35001
- Huang (S.Z.).— Gradient inequalities. With applications to asymptotic behavior and stability of gradient-like systems. Mathematical Surveys and Monographs, 126. Am. Math. Soc. (2006). Zbl1132.35002MR2226672
- Kato (T.).— Perturbation theory for linear operators. Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, (1995). Zbl0836.47009MR1335452
- Lieb (E.H.), Seiringer (R.).— Derivation of the Gross-Pitaevskii Equation for Rotating Bose Gases. Commun. Math. Phys. 264, p. 505-537 (2006). Zbl1233.82004MR2215615
- Lojasiewicz (S.).— Une propriété topologique des sous-ensembles analytiques réels. Les Equations aux Dérivées Partielles, p. 87-89, Editions du centre National de la Recherche Scientifique (1963). Zbl0234.57007MR160856
- Madison (K.W.), Chevy (F.), Wohlleben (W.), Dalibard (J.).— Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84, p. 806 (2000).
- Madison (K.W.), Chevy (F.), Wohlleben (W.), Dalibard (J.).— Vortices in a stirred Bose-Einstein condensate Jour. Mod. Optics 47, p. 2715 (2000).
- Martinez (A.), Sordoni (V.).— A general reduction scheme for the time-dependent Born-Oppenheimer approximation. C.R. Acad. Sci. Paris Ser. I, 334, p. 185-188 (2002). Zbl1079.81524MR1891055
- Martinez (A.), Sordoni (V.).— Twisted Pseudodifferential Calculus and Application to the Quantum Evolution of Molecules. Mem. Amer. Math. Soc. 200 no. 936 (2009). Zbl1179.35357MR2527490
- Nataf (F.), Nier (F.).— Convergence of domain decomposition methods via semi-classical calculus. Comm. Partial Differential Equations 23 no. 5-6, p. 1007-1059 (1998). Zbl0909.35007MR1632788
- Nenciu (G.), Sordoni (V.).— Semiclassical limit for multistate Klein-Gordon systems: almost invariant subspaces, and scattering theory. J. Math. Phys. 45 no. 9, p. 3676-3696 (2004). Zbl1071.81043MR2081813
- Nier (F.).— A propos des fonctions thêta et des réseaux d’Abrikosov. Séminaire Equations aux Dérivées Partielles. Ecole Polytechnique, Exp. No. XII (2006-2007). Zbl1171.33012MR2385199
- Nirenberg (L.).— On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13, p. 116-162 (1959). Zbl0088.07601MR109940
- Panati (G.), Spohn (H.), Teufel (S.).— Space adiabatic perturbation theory. Adv. Theor. Math. Phys. 7 no. 1, p. 145-204 (2003). MR2014961
- Panati (G.), Spohn (H.), Teufel (S.).— The time-dependent Born-Oppenheimer approximation. M2AN 45 no. 2, p. 297-314 (2007). Zbl1135.81338MR2339630
- Simon (L.).— Asymptotics for a class of non-linear evolution equations, with applications to geometric problems. Ann. of Math. 118, p. 525-571 (1983). Zbl0549.35071MR727703
- Sjöstrand (J.).— Parametrices for pseudodifferential operators with multiple characteristics. Ark. für Mat. 12 p. 85-130 (1974). Zbl0317.35076MR352749
- Sordoni (V.).— Reduction scheme for semiclassical operator-valued Schrödinger type equation and application to scattering. Comm. Partial Differential Equations 28 no. 7-8, p. 1221-1236 (2003). Zbl1274.35073MR1998936
- Taylor (M.).— Partial Differential Equations III, Nonlinear Equations. Applied Mathematical Sciences Vol. 117, Springer (1997). Zbl1206.35004MR1477408