Analysis of boundary bubbling solutions for an anisotropic Emden–Fowler equation
Juncheng Wei; Dong Ye; Feng Zhou
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 3, page 425-447
- ISSN: 0294-1449
Access Full Article
topHow to cite
topWei, Juncheng, Ye, Dong, and Zhou, Feng. "Analysis of boundary bubbling solutions for an anisotropic Emden–Fowler equation." Annales de l'I.H.P. Analyse non linéaire 25.3 (2008): 425-447. <http://eudml.org/doc/78796>.
@article{Wei2008,
author = {Wei, Juncheng, Ye, Dong, Zhou, Feng},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {boundary bubble; blow-up analysis; localized energy method; Emden-Fowler equation},
language = {eng},
number = {3},
pages = {425-447},
publisher = {Elsevier},
title = {Analysis of boundary bubbling solutions for an anisotropic Emden–Fowler equation},
url = {http://eudml.org/doc/78796},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Wei, Juncheng
AU - Ye, Dong
AU - Zhou, Feng
TI - Analysis of boundary bubbling solutions for an anisotropic Emden–Fowler equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 3
SP - 425
EP - 447
LA - eng
KW - boundary bubble; blow-up analysis; localized energy method; Emden-Fowler equation
UR - http://eudml.org/doc/78796
ER -
References
top- [1] Bandle C., Flucher M., Harmonic radius and concentration of energy hyperbolic radius and Liouville’s equations and , SIAM Rev.38 (2) (1996) 191-238. Zbl0857.35034MR1391227
- [2] Baraket S., Pacard F., Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations6 (1) (1998) 1-38. Zbl0890.35047MR1488492
- [3] Brezis H., Merle F., Uniform estimates and blow-up behavior for solutions of in two dimensions, Comm. Partial Differential Equations16 (8–9) (1991) 1223-1253. Zbl0746.35006MR1132783
- [4] Caglioti E., Lions P.L., Marchioro C., Pulvirenti M., A special class of stationary flows for two-dimensional Euler-equations: a statistical mechanics description, Comm. Math. Phys.143 (1992) 501-525. Zbl0745.76001MR1145596
- [5] Caglioti E., Lions P.L., Marchioro C., Pulvirenti M., A special class of stationary flows for two-dimensional Euler-equations: a statistical mechanics description, Part II, Comm. Math. Phys.174 (1995) 229-260. Zbl0840.76002MR1362165
- [6] Chandrasekhar S., An Introduction to the Study of Stellar Structure, Dover, New York, 1957. Zbl0079.23901MR92663
- [7] Chanillo S., Kiessling M., Surfaces with prescribed Gauss curvature, Duke Math. J.105 (2) (2000) 309-353. Zbl1023.53005MR1793614
- [8] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (1991) 615-623. Zbl0768.35025MR1121147
- [9] Del Pino M., Kowalczyk M., Musso M., Singular limits in Liouville-type equations, Calc. Var. Partial Differential Equations24 (2005) 47-81. Zbl1088.35067MR2157850
- [10] Esposito P., Grossi M., Pistoia A., On the existence of blowing-up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire22 (2005) 227-257. Zbl1129.35376MR2124164
- [11] Gelfand I.M., Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl.29 (1963) 295-381. Zbl0127.04901MR153960
- [12] Gidas B., Ni W.M., Nirenberg L., Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979) 209-243. Zbl0425.35020MR544879
- [13] Joseph D.D., Lundgren T.S., Quasilinear problems driven by positive sources, Arch. Rat. Mech. Anal.49 (1973) 241-269. Zbl0266.34021MR340701
- [14] Li Y.Y., Harnack type inequality: the method of moving planes, Comm. Math. Phys.200 (1999) 421-444. Zbl0928.35057MR1673972
- [15] Li Y.Y., Shafrir I., Blow-up analysis for solutions of in dimension two, Indiana Univ. Math. J.43 (4) (1994) 1255-1270. Zbl0842.35011MR1322618
- [16] Lin S.S., Positive radial solutions and non-radial bifurcation for semilinear elliptic equations in annular domains, J. Differential Eqnuations86 (1990) 367-391. Zbl0734.35073MR1064016
- [17] Lin C.S., Topological degree for mean field equations on , Duke Math. J.104 (3) (2000) 501-536. Zbl0964.35038MR1781481
- [18] Ma L., Wei J., Convergence for a Liouville equation, Comm. Math. Helv.76 (2001) 506-514. Zbl0987.35056MR1854696
- [19] Mignot F., Murat F., Puel J.P., Variation d'un point retournement par rapport au domaine, Comm. Partial Differential Equations4 (1979) 1263-1297. Zbl0422.35039MR546644
- [20] Mizoguchi N., Suzuki T., Equations of gas combustion: S-shaped bifurcation and mushrooms, J. Differential Equations134 (1997) 183-215. Zbl0876.35037MR1432094
- [21] Nagasaki K., Suzuki T., Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities, Asymptotic Anal.3 (1990) 173-188. Zbl0726.35011MR1061665
- [22] Nagasaki K., Suzuki T., Radial solutions for on annuli in higher dimensions, J. Differential Equations100 (1992) 137-161. Zbl0776.35047MR1187866
- [23] Pacard F., Radial and non-radial solutions of on an annulus of , , J. Differential Equations101 (1993) 103-138. Zbl0799.35089MR1199485
- [24] Pohozaev S.I., Eigenfunctions of the equation , Soviet Math. Dokl.6 (1965) 1408-1411. Zbl0141.30202MR192184
- [25] Senba T., Suzuki T., Some structures of the solution set from stationary system of chemotaxis, Adv. Math. Sci. Appl.10 (2000) 191-224. Zbl0999.35031MR1769174
- [26] Wei J., Ye D., Zhou F., Bubbling solutions for an anisotropic Emden–Fowler equation, Calc. Var. Partial Differential Equations28 (2007) 217-247. Zbl1159.35402MR2284567
- [27] Ye D., Une remarque sur le comportement asymptotique des solutions de , C. R. Acad. Sci. Paris I325 (1997) 1279-1282. Zbl0895.35014MR1490413
- [28] Ye D., Zhou F., A generalized two dimensional Emden–Fowler equation with exponential nonlinearity, Calc. Var. Partial Differential Equations13 (2001) 141-158. Zbl1077.35048MR1861095
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.