A variational treatment for general elliptic equations of the flame propagation type : regularity of the free boundary

Eduardo V. Teixeira

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 4, page 633-658
  • ISSN: 0294-1449

How to cite

top

Teixeira, Eduardo V.. "A variational treatment for general elliptic equations of the flame propagation type : regularity of the free boundary." Annales de l'I.H.P. Analyse non linéaire 25.4 (2008): 633-658. <http://eudml.org/doc/78804>.

@article{Teixeira2008,
author = {Teixeira, Eduardo V.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {free boundary problems; singular perturbation; complete elliptic operator; regularity theory},
language = {eng},
number = {4},
pages = {633-658},
publisher = {Elsevier},
title = {A variational treatment for general elliptic equations of the flame propagation type : regularity of the free boundary},
url = {http://eudml.org/doc/78804},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Teixeira, Eduardo V.
TI - A variational treatment for general elliptic equations of the flame propagation type : regularity of the free boundary
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 4
SP - 633
EP - 658
LA - eng
KW - free boundary problems; singular perturbation; complete elliptic operator; regularity theory
UR - http://eudml.org/doc/78804
ER -

References

top
  1. [1] Alt H., Caffarelli L., Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math.325 (1981) 105-144. Zbl0449.35105MR618549
  2. [2] Berestycki H., Caffarelli L.A., Nirenberg L., Uniform estimates for regularization of free boundary problems, in: Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 567-619. Zbl0702.35252MR1044809
  3. [3] Berestycki H., Nirenberg L., Monotonicity, symmetry and antisymmetry of solutions of semilinear elliptic equations, J. Geom. Phys.5 (2) (1988) 237-275. Zbl0698.35031MR1029429
  4. [4] Berestycki H., Nirenberg L., Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, in: Analysis, et cetera, Academic Press, Boston, MA, 1990, pp. 115-164. Zbl0705.35004MR1039342
  5. [5] Berestycki H., Nirenberg L., Travelling front solutions of semilinear equations in n dimensions, in: Frontiers in Pure and Applied Mathematics, North-Holland, Amsterdam, 1991, pp. 31-41. Zbl0780.35054MR1110590
  6. [6] Berestycki H., Nirenberg L., On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.)22 (1) (1991) 1-37. Zbl0784.35025MR1159383
  7. [7] Caffarelli L.A., A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are , Rev. Mat. Iberoamericana3 (2) (1987) 139-162. Zbl0676.35085MR990856
  8. [8] Caffarelli L.A., A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math.42 (1) (1989) 55-78. Zbl0676.35086MR973745
  9. [9] Caffarelli L.A., A Harnack inequality approach to the regularity of free boundaries. III. Existence theory, compactness, and dependence on X, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)15 (4) (1988) 583-602, (1989). Zbl0702.35249MR1029856
  10. [10] Caffarelli L.A., Jerison D., Kenig C.E., Some new monotonicity theorems with applications to free boundary problems, Ann. of Math. (2)155 (2) (2002) 369-404. Zbl1142.35382MR1906591
  11. [11] Caffarelli L.A., Lederman C., Wolanski N., Pointwise and viscosity solutions for the limit of a two phase parabolic singular perturbation problem, Indiana Univ. Math. J.46 (3) (1997) 719-740. Zbl0909.35013MR1488334
  12. [12] Cerutti M.C., Ferrari F., Salsa S., Two-phase problems for linear elliptic operators with variable coefficients: Lipschitz free boundaries are , Arch. Ration. Mech. Anal.171 (2004) 329-348. Zbl1106.35144MR2038343
  13. [13] Ferrari F., Salsa S., Regularity of the free boundary in two-phase problems for linear elliptic operators, Adv. Math.214 (1) (2007) 288-322. Zbl1189.35385MR2348032
  14. [14] Fife P.C., Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomath., vol. 28, Springer-Verlag, New York, 1979. Zbl0403.92004MR527914
  15. [15] Giaquinta M., Giusti E., Quasi-Minima, Ann. Inst. H. Poincaré Anal. Non Linéaire1 (1984) 79-107. Zbl0541.49008MR778969
  16. [16] Han Q., Lin F., Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics, vol. 1, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1997. Zbl1052.35505MR1669352
  17. [17] Lederman C., Wolanski N., Viscosity solutions and regularity of the free boundary for the limit of an elliptic two phase singular perturbation problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)27 (2) (1998) 253-288, (1999). Zbl0931.35200MR1664689
  18. [18] Moreira D., Teixeira E.V., A singular free boundary problem for elliptic equations in divergence form, Calc. Var. Partial Differential Equations29 (2) (2007) 161-190. Zbl05146201MR2307771
  19. [19] E.V. Teixeira, Optimal regularity of viscosity solutions of fully nonlinear singular equations and their limiting free boundary problems, Mat. Contemp., submitted for publication. Zbl1159.49037MR2373512
  20. [20] Weiss G.S., Partial regularity for a minimum problem with free boundary, J. Geom. Anal.9 (2) (1999) 317-326. Zbl0960.49026MR1759450

NotesEmbed ?

top

You must be logged in to post comments.