On the Dirac delta as initial condition for nonlinear Schrödinger equations

V. Banica; L. Vega

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 4, page 697-711
  • ISSN: 0294-1449

How to cite

top

Banica, V., and Vega, L.. "On the Dirac delta as initial condition for nonlinear Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 25.4 (2008): 697-711. <http://eudml.org/doc/78807>.

@article{Banica2008,
author = {Banica, V., Vega, L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Schrödinger equations; singular data; Hasimoto transformation; Gross-Pitaevskii equation},
language = {eng},
number = {4},
pages = {697-711},
publisher = {Elsevier},
title = {On the Dirac delta as initial condition for nonlinear Schrödinger equations},
url = {http://eudml.org/doc/78807},
volume = {25},
year = {2008},
}

TY - JOUR
AU - Banica, V.
AU - Vega, L.
TI - On the Dirac delta as initial condition for nonlinear Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 4
SP - 697
EP - 711
LA - eng
KW - Schrödinger equations; singular data; Hasimoto transformation; Gross-Pitaevskii equation
UR - http://eudml.org/doc/78807
ER -

References

top
  1. [1] Bethuel F., Saut J.-C., Travelling waves for the Gross–Pitaevskii equation I, Ann. Inst. H. Poincaré Phys. Theor.70 (2) (1999) 147-238. Zbl0933.35177MR1669387
  2. [2] Brézis H., Friedman A., Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. (9)62 (1983) 73-97. Zbl0527.35043MR700049
  3. [3] Cazenave T., Weissler F., The Cauchy problem for the critical nonlinear Schrödinger in H s , Nonlinear Anal. TMA14 (1990) 807-836. Zbl0706.35127MR1055532
  4. [4] Coifman R.R., Meyer Y., Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Soc. Math. France, 1978. Zbl0483.35082MR518170
  5. [5] Da Rios L.S., On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo22 (1906) 117. 
  6. [6] de la Hoz F., Self-similar solutions for the 1-D Schrödinger map on the hyperbolic plane, Math. Z.257 (2007) 61-80. Zbl1128.35099MR2318570
  7. [7] Ding Q., A note on NLS and the Schrödinger flow of maps, Phys. Lett. A248 (1) (1998) 49-56. Zbl1115.35368
  8. [8] Gallo C., Schrödinger group on Zhidkov spaces, Adv. Differential Equations9 (2004) 509-538. Zbl1103.35093MR2099970
  9. [9] C. Gallo, The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity, preprint. Zbl1156.35086MR2424376
  10. [10] Gérard P., The Cauchy problem for the Gross–Pitaevskii equation, Ann. Inst. H. Poincaré Anal. Non Linéaire23 (2006) 765-779. Zbl1122.35133MR2259616
  11. [11] Ginibre J., Introduction aux équations de Schrödinger non linéaires, Edition de Paris-Sud, 1998. 
  12. [12] Ginibre J., Velo G., On a class of nonlinear Schrödinger equations, J. Funct. Anal.32 (1979) 1-71. Zbl0396.35029MR533219
  13. [13] Goubet O., Two remarks on solutions of Gross–Pitaevskii equations on Zhidkov spaces, Monatsh. Math.151 (2007) 39-44. Zbl1128.35096MR2317389
  14. [14] A. Grünrock, Abstract in Mathematisches Forschunginstitut Oberwolfach report 50 (2004). 
  15. [15] Gustafson S., Nakanishi K., Tsai T.-P., Scattering for the Gross–Pitaevskii equation, Math. Res. Lett.13 (2–3) (2006) 273-286. Zbl1119.35084MR2231117
  16. [16] Gutiérrez S., Rivas J., Vega L., Formation of singularities and self-similar vortex motion under the localized induction approximation, Comm. Partial Differential Equations28 (2003) 927-968. Zbl1044.35089MR1986056
  17. [17] Kenig C., Ponce G., Vega L., On the ill-posedness of some canonical non-linear dispersive equations, Duke Math. J.106 (3) (2001) 617-633. Zbl1034.35145MR1813239
  18. [18] N. Kita, Nonlinear Schrödinger equation with triple δ-functions as initial data, in: Sapporo Guest House Symposium 20 “Nonlinear Wave Equations”, 2005. 
  19. [19] Koiso N., Vortex filament equation and semilinear Schrödinger equation, in: Nonlinear Waves, Sapporo, 1995, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 10, Gakkōtosho, Tokyo, 1997, pp. 231-236. Zbl0890.35144MR1602745
  20. [20] Ozawa T., Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys.139 (3) (1991) 479-493. Zbl0742.35043MR1121130
  21. [21] Vargas A., Vega L., Global well-posedness for 1d non-linear Schrödinger equations for data with an infinite L 2 norm, J. Math. Pures Appl.80 (10) (2001) 1029-1044. Zbl1027.35134MR1876762
  22. [22] Weissler F., Asymptotic analysis of an ordinary differential equation and non-uniqueness for a semilinear partial differential equation, Arch. Ration. Mech. Anal.91 (1986) 231-245. Zbl0614.35043MR806003
  23. [23] P.E. Zhidkov, The Cauchy problem for a nonlinear Schrödinger equation, Soobshch. OIYaI R5-87-373, Dubna, 1987. 
  24. [24] Zhidkov P.E., Korteveg–de-Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Math., vol. 1756, Springer-Verlag, 2001. Zbl0987.35001MR1831831

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.