On the Dirac delta as initial condition for nonlinear Schrödinger equations
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 4, page 697-711
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBanica, V., and Vega, L.. "On the Dirac delta as initial condition for nonlinear Schrödinger equations." Annales de l'I.H.P. Analyse non linéaire 25.4 (2008): 697-711. <http://eudml.org/doc/78807>.
@article{Banica2008,
author = {Banica, V., Vega, L.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Schrödinger equations; singular data; Hasimoto transformation; Gross-Pitaevskii equation},
language = {eng},
number = {4},
pages = {697-711},
publisher = {Elsevier},
title = {On the Dirac delta as initial condition for nonlinear Schrödinger equations},
url = {http://eudml.org/doc/78807},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Banica, V.
AU - Vega, L.
TI - On the Dirac delta as initial condition for nonlinear Schrödinger equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 4
SP - 697
EP - 711
LA - eng
KW - Schrödinger equations; singular data; Hasimoto transformation; Gross-Pitaevskii equation
UR - http://eudml.org/doc/78807
ER -
References
top- [1] Bethuel F., Saut J.-C., Travelling waves for the Gross–Pitaevskii equation I, Ann. Inst. H. Poincaré Phys. Theor.70 (2) (1999) 147-238. Zbl0933.35177MR1669387
- [2] Brézis H., Friedman A., Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. (9)62 (1983) 73-97. Zbl0527.35043MR700049
- [3] Cazenave T., Weissler F., The Cauchy problem for the critical nonlinear Schrödinger in , Nonlinear Anal. TMA14 (1990) 807-836. Zbl0706.35127MR1055532
- [4] Coifman R.R., Meyer Y., Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Soc. Math. France, 1978. Zbl0483.35082MR518170
- [5] Da Rios L.S., On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo22 (1906) 117.
- [6] de la Hoz F., Self-similar solutions for the 1-D Schrödinger map on the hyperbolic plane, Math. Z.257 (2007) 61-80. Zbl1128.35099MR2318570
- [7] Ding Q., A note on NLS and the Schrödinger flow of maps, Phys. Lett. A248 (1) (1998) 49-56. Zbl1115.35368
- [8] Gallo C., Schrödinger group on Zhidkov spaces, Adv. Differential Equations9 (2004) 509-538. Zbl1103.35093MR2099970
- [9] C. Gallo, The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity, preprint. Zbl1156.35086MR2424376
- [10] Gérard P., The Cauchy problem for the Gross–Pitaevskii equation, Ann. Inst. H. Poincaré Anal. Non Linéaire23 (2006) 765-779. Zbl1122.35133MR2259616
- [11] Ginibre J., Introduction aux équations de Schrödinger non linéaires, Edition de Paris-Sud, 1998.
- [12] Ginibre J., Velo G., On a class of nonlinear Schrödinger equations, J. Funct. Anal.32 (1979) 1-71. Zbl0396.35029MR533219
- [13] Goubet O., Two remarks on solutions of Gross–Pitaevskii equations on Zhidkov spaces, Monatsh. Math.151 (2007) 39-44. Zbl1128.35096MR2317389
- [14] A. Grünrock, Abstract in Mathematisches Forschunginstitut Oberwolfach report 50 (2004).
- [15] Gustafson S., Nakanishi K., Tsai T.-P., Scattering for the Gross–Pitaevskii equation, Math. Res. Lett.13 (2–3) (2006) 273-286. Zbl1119.35084MR2231117
- [16] Gutiérrez S., Rivas J., Vega L., Formation of singularities and self-similar vortex motion under the localized induction approximation, Comm. Partial Differential Equations28 (2003) 927-968. Zbl1044.35089MR1986056
- [17] Kenig C., Ponce G., Vega L., On the ill-posedness of some canonical non-linear dispersive equations, Duke Math. J.106 (3) (2001) 617-633. Zbl1034.35145MR1813239
- [18] N. Kita, Nonlinear Schrödinger equation with triple δ-functions as initial data, in: Sapporo Guest House Symposium 20 “Nonlinear Wave Equations”, 2005.
- [19] Koiso N., Vortex filament equation and semilinear Schrödinger equation, in: Nonlinear Waves, Sapporo, 1995, GAKUTO Internat. Ser. Math. Sci. Appl., vol. 10, Gakkōtosho, Tokyo, 1997, pp. 231-236. Zbl0890.35144MR1602745
- [20] Ozawa T., Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys.139 (3) (1991) 479-493. Zbl0742.35043MR1121130
- [21] Vargas A., Vega L., Global well-posedness for 1d non-linear Schrödinger equations for data with an infinite norm, J. Math. Pures Appl.80 (10) (2001) 1029-1044. Zbl1027.35134MR1876762
- [22] Weissler F., Asymptotic analysis of an ordinary differential equation and non-uniqueness for a semilinear partial differential equation, Arch. Ration. Mech. Anal.91 (1986) 231-245. Zbl0614.35043MR806003
- [23] P.E. Zhidkov, The Cauchy problem for a nonlinear Schrödinger equation, Soobshch. OIYaI R5-87-373, Dubna, 1987.
- [24] Zhidkov P.E., Korteveg–de-Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Math., vol. 1756, Springer-Verlag, 2001. Zbl0987.35001MR1831831
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.