Energy concentration for the Landau–Lifshitz equation
Annales de l'I.H.P. Analyse non linéaire (2008)
- Volume: 25, Issue: 5, page 987-1013
- ISSN: 0294-1449
Access Full Article
topHow to cite
topMoser, Roger. "Energy concentration for the Landau–Lifshitz equation." Annales de l'I.H.P. Analyse non linéaire 25.5 (2008): 987-1013. <http://eudml.org/doc/78822>.
@article{Moser2008,
author = {Moser, Roger},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Landau-Lifshitz equation; energy concentration; mean curvature flow},
language = {eng},
number = {5},
pages = {987-1013},
publisher = {Elsevier},
title = {Energy concentration for the Landau–Lifshitz equation},
url = {http://eudml.org/doc/78822},
volume = {25},
year = {2008},
}
TY - JOUR
AU - Moser, Roger
TI - Energy concentration for the Landau–Lifshitz equation
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 5
SP - 987
EP - 1013
LA - eng
KW - Landau-Lifshitz equation; energy concentration; mean curvature flow
UR - http://eudml.org/doc/78822
ER -
References
top- [1] Allard W.K., On the first variation of a varifold, Ann. of Math. (2)95 (1972) 417-491. Zbl0252.49028MR307015
- [2] Ambrosio L., Soner H.M., A measure-theoretic approach to higher codimension mean curvature flows, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)25 (1997) 27-49. Zbl1043.35136MR1655508
- [3] Brakke K.A., The Motion of a Surface by its Mean Curvature, Mathematical Notes, vol. 20, Princeton University Press, Princeton, NJ, 1978. Zbl0386.53047MR485012
- [4] Coifman R., Lions P.L., Meyer Y., Semmes S., Compensated compactness and Hardy spaces, J. Math. Pures Appl.72 (1993) 247-286. Zbl0864.42009MR1225511
- [5] Ding W., Tian G., Energy identity for a class of approximate harmonic maps from surfaces, Comm. Anal. Geom.3 (1995) 543-554. Zbl0855.58016MR1371209
- [6] Eells J., Lemaire L., A report on harmonic maps, Bull. London Math. Soc.10 (1978) 1-68. Zbl0401.58003MR495450
- [7] Federer H., Geometric Measure Theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
- [8] Feldman M., Partial regularity for harmonic maps of evolution into spheres, Comm. Partial Differential Equations19 (1994) 761-790. Zbl0807.35021MR1274539
- [9] Hélein F., Régularité des applications faiblement harmoniques entre une surface et une sphère, C. R. Acad. Sci. Paris Sér. I Math.311 (1990) 519-524. Zbl0728.35014MR1078114
- [10] Hutchinson J.E., Second fundamental form for varifolds and the existence of surfaces minimising curvature, Indiana Univ. Math. J.35 (1986) 45-71. Zbl0561.53008MR825628
- [11] Jost J., Two-Dimensional Geometric Variational Problems, John Wiley & Sons, Chichester, 1991. Zbl0729.49001MR1100926
- [12] Li J., Tian G., The blow-up locus of heat flows for harmonic maps, Acta Math. Sin. (Engl. Ser.)16 (2000) 29-62. Zbl0959.58021MR1760521
- [13] Lin F.-H., Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. of Math. (2)149 (1999) 785-829. Zbl0949.58017MR1709303
- [14] Lin F.-H., Mapping problems, fundamental groups and defect measures, Acta Math. Sin. (Engl. Ser.)15 (1999) 25-52. Zbl0926.49025MR1701132
- [15] Lin F.-H., Varifold type theory for Sobolev mappings, in: First International Congress of Chinese Mathematicians, Beijing, 1998, Amer. Math. Soc., Providence, 2001, pp. 423-430. Zbl1056.58007MR1830199
- [16] Lin F.-H., Rivière T., Energy quantization for harmonic maps, Duke Math. J.111 (2002) 177-193. Zbl1014.58008MR1876445
- [17] Lin F.-H., Wang C., Energy identity of harmonic map flows from surfaces at finite singular time, Calc. Var. Partial Differential Equations6 (1998) 369-380. Zbl0908.58008MR1624304
- [18] Lin F.-H., Wang C., Harmonic and quasi-harmonic spheres. III. Rectifiability of the parabolic defect measure and generalized varifold flows, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 209-259. Zbl1042.58006MR1902744
- [19] Moser R., Energy concentration for almost harmonic maps and the Willmore functional, Math. Z.251 (2005) 293-311. Zbl1079.58013MR2191029
- [20] Moser R., Partial Regularity for Harmonic Maps and Related Problems, World Scientific Publishing Co. Pte. Ltd, Singapore, 2005. Zbl1246.58012MR2155901
- [21] Qing J., On singularities of the heat flow for harmonic maps from surfaces into spheres, Comm. Anal. Geom.3 (1995) 297-315. Zbl0868.58021MR1362654
- [22] Qing J., Tian G., Bubbling of the heat flows for harmonic maps from surfaces, Comm. Pure Appl. Math.50 (1997) 295-310. Zbl0879.58017MR1438148
- [23] Sacks J., Uhlenbeck K., The existence of minimal immersions of 2-spheres, Ann. of Math. (2)113 (1981) 1-24. Zbl0462.58014MR604040
- [24] Simon L., Lectures on Geometric Measure Theory, Australian National University Centre for Mathematical Analysis, Canberra, 1983. Zbl0546.49019MR756417
- [25] Stein E.M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993. Zbl0821.42001MR1232192
- [26] Struwe M., On the evolution of harmonic maps in higher dimensions, J. Differential Geom.28 (1988) 485-502. Zbl0631.58004MR965226
- [27] Tartar L., Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8)1 (1998) 479-500. Zbl0929.46028MR1662313
- [28] Willmore T.J., Riemannian Geometry, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. Zbl0797.53002MR1261641
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.