Harmonic and quasi-harmonic spheres, part III. Rectifiablity of the parabolic defect measure and generalized varifold flows

Fang Hua Lin; Chang You Wang

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 2, page 209-259
  • ISSN: 0294-1449

How to cite

top

Lin, Fang Hua, and Wang, Chang You. "Harmonic and quasi-harmonic spheres, part III. Rectifiablity of the parabolic defect measure and generalized varifold flows." Annales de l'I.H.P. Analyse non linéaire 19.2 (2002): 209-259. <http://eudml.org/doc/78544>.

@article{Lin2002,
author = {Lin, Fang Hua, Wang, Chang You},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {harmonic or approximated harmonic map flows; concentration measures; stratification; rectifiablity; generalized varifold flows; Brakke's flow; energy quantization},
language = {eng},
number = {2},
pages = {209-259},
publisher = {Elsevier},
title = {Harmonic and quasi-harmonic spheres, part III. Rectifiablity of the parabolic defect measure and generalized varifold flows},
url = {http://eudml.org/doc/78544},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Lin, Fang Hua
AU - Wang, Chang You
TI - Harmonic and quasi-harmonic spheres, part III. Rectifiablity of the parabolic defect measure and generalized varifold flows
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 2
SP - 209
EP - 259
LA - eng
KW - harmonic or approximated harmonic map flows; concentration measures; stratification; rectifiablity; generalized varifold flows; Brakke's flow; energy quantization
UR - http://eudml.org/doc/78544
ER -

References

top
  1. [1] Ambrosio L., Soner H.M., A measure-theoretic approach to higher codimension mean curvature flows (Dedicated to Ennio De Giorgi), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)25 (1–2) (1997) 27-49, (1998). Zbl1043.35136MR1655508
  2. [2] Ambrosio L., Soner H.M., Level set approach to mean curvature flow in arbitrary codimension, J. Differential Geom.43 (4) (1996) 693-737. Zbl0868.35046MR1412682
  3. [3] Almgren F.J., Q valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two, Bull. Amer. Math. Soc. (N.S.)8 (2) (1983) 327-328. Zbl0557.49021MR684900
  4. [4] Almgren F.J., The Theory of Varifolds. Mimeographed Notes, Princeton, 1965. 
  5. [5] Allard W.K., An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrand is controlled, in: Geometric Measure Theory and the Calculus of Variations, Arcata, CA, 1984, Proc. Sympos. Pure Math., 44, American Mathematical Society, Providence, RI, 1986, pp. 1-28. Zbl0609.49028MR840267
  6. [6] Allard W.K., On the first variation of a varifold, Ann. of Math. (2)95 (1972) 417-491. Zbl0252.49028MR307015
  7. [7] Bethuel F., On the singular set of stationary harmonic maps, Manu. Math.78 (4) (1993) 417-443. Zbl0792.53039MR1208652
  8. [8] Brakke K., The Motion of a Surface by its Mean Curvature, Mathematical Notes, 20, Princeton University Press, Princeton, NJ, 1978. Zbl0386.53047MR485012
  9. [9] Cheng X.X., Estimate of the singular set of the evolution problem for harmonic maps, J. Differential Geom.34 (1) (1991) 169-174. Zbl0699.58028MR1114458
  10. [10] Chen Y.M., Li J.Y., Lin F.H., Partial regularity for weak heat flows into spheres, Comm. Pure Appl. Math.48 (4) (1995) 429-448. Zbl0827.35024MR1324408
  11. [11] Chen Y.M., Lin F.H., Evolution of harmonic maps with Dirichlet boundary conditions, Comm. Anal. Geom.1 (3–4) (1993) 327-346. Zbl0845.35049MR1266472
  12. [12] Caffarelli L., Kohn R., Nirenberg L., Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math.35 (6) (1982) 771-831. Zbl0509.35067MR673830
  13. [13] Chen Y.M., Struwe M., Existence and partial regularity results for the heat flow for harmonic maps, Math. Z.201 (1) (1989) 83-103. Zbl0652.58024MR990191
  14. [14] Ding W.Y., Tian G., Energy identity for a class of approximate harmonic maps from surfaces, Comm. Anal. Geom.3 (3–4) (1995) 543-554. Zbl0855.58016MR1371209
  15. [15] Eells J., Sampson J., Harmonic mappings of riemannian manifolds, Amer. J. Math.86 (1964) 109-160. Zbl0122.40102MR164306
  16. [16] Federer H., Geometric Measure Theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
  17. [17] Feldman M., Partial regularity for harmonic maps of evolution into spheres, Comm. Partial Differential Equations19 (5–6) (1994) 761-790. Zbl0807.35021MR1274539
  18. [18] Federer H., Ziemer W.P., The Lebesgue set of a function whose distribution derivatives are pth power summable, Indiana Univ. Math. J.22 (1972/73) 139-158. Zbl0238.28015MR435361
  19. [19] Helein F., Regularite des applications faiblement harmoniques entre une surface et une variete riemannienne, C. R. Acad. Sci. Paris Ser. I Math.312 (8) (1991) 591-596. Zbl0728.35015MR1101039
  20. [20] Ilmanen T., Convergence of the Allen–Cahn equation to Brakke's motion by mean curvature, J. Differential Geom.38 (2) (1993) 417-461. Zbl0784.53035MR1237490
  21. [21] Ilmanen T., Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc.108 (520) (1994). Zbl0798.35066MR1196160
  22. [22] Jerrard R., Soner H.M., Scaling limits and regularity results for a class of Ginzburg–Landau systems, Ann. Inst. H. Poincaré Anal. Non Lineaire16 (4) (1999) 423-466. Zbl0944.35006MR1697561
  23. [23] Lin F.H., Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. of Math. (2)149 (3) (1999) 785-829. Zbl0949.58017MR1709303
  24. [24] Lin F.H., Mapping problems, fundamental groups and defect measures, Acta Math. Sin. (Engl. Ser.)15 (1) (1999) 25-52. Zbl0926.49025MR1701132
  25. [25] Lin F.H., Complex Ginzburg–Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds, Comm. Pure Appl. Math.51 (4) (1998) 385-441. Zbl0932.35121MR1491752
  26. [26] Lin F.H., Varifold type theory for Sobolev mappings, in: AMS/IP Stud. Adv. Math. 20, American Mathematical Society, Providence, RI, 2001, pp. 423-430. Zbl1056.58007MR1830199
  27. [27] Lin F.H., Riviere T., Energy quantization for harmonic maps. Duke Math. J. (to appear). Zbl1014.58008MR1876445
  28. [28] Lin F.H., Riviere T., A quantization property for static Ginzburg–Landau vortices, C.P.A.M.54 (2) (2001) 206-228. Zbl1033.58013MR1794353
  29. [29] Li J.Y., Tian G., Blow-up Locus for heat flows of harmonic maps, Acta Math. Sin. (Engl. Ser.)16 (1) (2000) 29-62. Zbl0959.58021MR1760521
  30. [30] Lin F.H., Wang C.Y., Energy identity of harmonic map flows from surfaces at finite singular time, Calc. Var. Partial Differential Equations6 (4) (1998) 369-380. Zbl0908.58008MR1624304
  31. [31] Lin F.H., Wang C.Y., Harmonic and quasi-harmonic spheres, Comm. Anal. Geom.7 (2) (1999) 397-429. Zbl0934.58018MR1685578
  32. [32] Lin F.H., Wang C.Y., Harmonic and quasi-harmonic spheres, Part II, Comm. Anal. Geom. (to appear). Zbl1042.58005MR1685578
  33. [33] Simon L., Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. Zbl0546.49019MR756417
  34. [34] Simon L., Theorems on regularity and singularity of energy minimizing maps, Lectures in Mathematics ETH Zürichür, Birkhauser Verlag, Basel, 1996, (based on lecture notes by Norbert Hungerbhler). Zbl0864.58015MR1399562
  35. [35] Struwe M., On the evolution of harmonic maps in higher dimensions, J. Differential Geom.28 (3) (1988) 485-502. Zbl0631.58004MR965226
  36. [36] Struwe M., On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv.60 (4) (1985) 558-581. Zbl0595.58013MR826871
  37. [37] White B., Stratification of minimal surfaces, mean curvature flows, and harmonic maps, J. Reine Angew. Math.488 (1997) 1-35. Zbl0874.58007MR1465365
  38. [38] Ziemer W.P., Weakly differentiable functions, Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.