Harmonic and quasi-harmonic spheres, part III. Rectifiablity of the parabolic defect measure and generalized varifold flows
Annales de l'I.H.P. Analyse non linéaire (2002)
- Volume: 19, Issue: 2, page 209-259
- ISSN: 0294-1449
Access Full Article
topHow to cite
topLin, Fang Hua, and Wang, Chang You. "Harmonic and quasi-harmonic spheres, part III. Rectifiablity of the parabolic defect measure and generalized varifold flows." Annales de l'I.H.P. Analyse non linéaire 19.2 (2002): 209-259. <http://eudml.org/doc/78544>.
@article{Lin2002,
author = {Lin, Fang Hua, Wang, Chang You},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {harmonic or approximated harmonic map flows; concentration measures; stratification; rectifiablity; generalized varifold flows; Brakke's flow; energy quantization},
language = {eng},
number = {2},
pages = {209-259},
publisher = {Elsevier},
title = {Harmonic and quasi-harmonic spheres, part III. Rectifiablity of the parabolic defect measure and generalized varifold flows},
url = {http://eudml.org/doc/78544},
volume = {19},
year = {2002},
}
TY - JOUR
AU - Lin, Fang Hua
AU - Wang, Chang You
TI - Harmonic and quasi-harmonic spheres, part III. Rectifiablity of the parabolic defect measure and generalized varifold flows
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 2
SP - 209
EP - 259
LA - eng
KW - harmonic or approximated harmonic map flows; concentration measures; stratification; rectifiablity; generalized varifold flows; Brakke's flow; energy quantization
UR - http://eudml.org/doc/78544
ER -
References
top- [1] Ambrosio L., Soner H.M., A measure-theoretic approach to higher codimension mean curvature flows (Dedicated to Ennio De Giorgi), Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)25 (1–2) (1997) 27-49, (1998). Zbl1043.35136MR1655508
- [2] Ambrosio L., Soner H.M., Level set approach to mean curvature flow in arbitrary codimension, J. Differential Geom.43 (4) (1996) 693-737. Zbl0868.35046MR1412682
- [3] Almgren F.J., Q valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two, Bull. Amer. Math. Soc. (N.S.)8 (2) (1983) 327-328. Zbl0557.49021MR684900
- [4] Almgren F.J., The Theory of Varifolds. Mimeographed Notes, Princeton, 1965.
- [5] Allard W.K., An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrand is controlled, in: Geometric Measure Theory and the Calculus of Variations, Arcata, CA, 1984, Proc. Sympos. Pure Math., 44, American Mathematical Society, Providence, RI, 1986, pp. 1-28. Zbl0609.49028MR840267
- [6] Allard W.K., On the first variation of a varifold, Ann. of Math. (2)95 (1972) 417-491. Zbl0252.49028MR307015
- [7] Bethuel F., On the singular set of stationary harmonic maps, Manu. Math.78 (4) (1993) 417-443. Zbl0792.53039MR1208652
- [8] Brakke K., The Motion of a Surface by its Mean Curvature, Mathematical Notes, 20, Princeton University Press, Princeton, NJ, 1978. Zbl0386.53047MR485012
- [9] Cheng X.X., Estimate of the singular set of the evolution problem for harmonic maps, J. Differential Geom.34 (1) (1991) 169-174. Zbl0699.58028MR1114458
- [10] Chen Y.M., Li J.Y., Lin F.H., Partial regularity for weak heat flows into spheres, Comm. Pure Appl. Math.48 (4) (1995) 429-448. Zbl0827.35024MR1324408
- [11] Chen Y.M., Lin F.H., Evolution of harmonic maps with Dirichlet boundary conditions, Comm. Anal. Geom.1 (3–4) (1993) 327-346. Zbl0845.35049MR1266472
- [12] Caffarelli L., Kohn R., Nirenberg L., Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math.35 (6) (1982) 771-831. Zbl0509.35067MR673830
- [13] Chen Y.M., Struwe M., Existence and partial regularity results for the heat flow for harmonic maps, Math. Z.201 (1) (1989) 83-103. Zbl0652.58024MR990191
- [14] Ding W.Y., Tian G., Energy identity for a class of approximate harmonic maps from surfaces, Comm. Anal. Geom.3 (3–4) (1995) 543-554. Zbl0855.58016MR1371209
- [15] Eells J., Sampson J., Harmonic mappings of riemannian manifolds, Amer. J. Math.86 (1964) 109-160. Zbl0122.40102MR164306
- [16] Federer H., Geometric Measure Theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
- [17] Feldman M., Partial regularity for harmonic maps of evolution into spheres, Comm. Partial Differential Equations19 (5–6) (1994) 761-790. Zbl0807.35021MR1274539
- [18] Federer H., Ziemer W.P., The Lebesgue set of a function whose distribution derivatives are pth power summable, Indiana Univ. Math. J.22 (1972/73) 139-158. Zbl0238.28015MR435361
- [19] Helein F., Regularite des applications faiblement harmoniques entre une surface et une variete riemannienne, C. R. Acad. Sci. Paris Ser. I Math.312 (8) (1991) 591-596. Zbl0728.35015MR1101039
- [20] Ilmanen T., Convergence of the Allen–Cahn equation to Brakke's motion by mean curvature, J. Differential Geom.38 (2) (1993) 417-461. Zbl0784.53035MR1237490
- [21] Ilmanen T., Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc.108 (520) (1994). Zbl0798.35066MR1196160
- [22] Jerrard R., Soner H.M., Scaling limits and regularity results for a class of Ginzburg–Landau systems, Ann. Inst. H. Poincaré Anal. Non Lineaire16 (4) (1999) 423-466. Zbl0944.35006MR1697561
- [23] Lin F.H., Gradient estimates and blow-up analysis for stationary harmonic maps, Ann. of Math. (2)149 (3) (1999) 785-829. Zbl0949.58017MR1709303
- [24] Lin F.H., Mapping problems, fundamental groups and defect measures, Acta Math. Sin. (Engl. Ser.)15 (1) (1999) 25-52. Zbl0926.49025MR1701132
- [25] Lin F.H., Complex Ginzburg–Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds, Comm. Pure Appl. Math.51 (4) (1998) 385-441. Zbl0932.35121MR1491752
- [26] Lin F.H., Varifold type theory for Sobolev mappings, in: AMS/IP Stud. Adv. Math. 20, American Mathematical Society, Providence, RI, 2001, pp. 423-430. Zbl1056.58007MR1830199
- [27] Lin F.H., Riviere T., Energy quantization for harmonic maps. Duke Math. J. (to appear). Zbl1014.58008MR1876445
- [28] Lin F.H., Riviere T., A quantization property for static Ginzburg–Landau vortices, C.P.A.M.54 (2) (2001) 206-228. Zbl1033.58013MR1794353
- [29] Li J.Y., Tian G., Blow-up Locus for heat flows of harmonic maps, Acta Math. Sin. (Engl. Ser.)16 (1) (2000) 29-62. Zbl0959.58021MR1760521
- [30] Lin F.H., Wang C.Y., Energy identity of harmonic map flows from surfaces at finite singular time, Calc. Var. Partial Differential Equations6 (4) (1998) 369-380. Zbl0908.58008MR1624304
- [31] Lin F.H., Wang C.Y., Harmonic and quasi-harmonic spheres, Comm. Anal. Geom.7 (2) (1999) 397-429. Zbl0934.58018MR1685578
- [32] Lin F.H., Wang C.Y., Harmonic and quasi-harmonic spheres, Part II, Comm. Anal. Geom. (to appear). Zbl1042.58005MR1685578
- [33] Simon L., Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. Zbl0546.49019MR756417
- [34] Simon L., Theorems on regularity and singularity of energy minimizing maps, Lectures in Mathematics ETH Zürichür, Birkhauser Verlag, Basel, 1996, (based on lecture notes by Norbert Hungerbhler). Zbl0864.58015MR1399562
- [35] Struwe M., On the evolution of harmonic maps in higher dimensions, J. Differential Geom.28 (3) (1988) 485-502. Zbl0631.58004MR965226
- [36] Struwe M., On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv.60 (4) (1985) 558-581. Zbl0595.58013MR826871
- [37] White B., Stratification of minimal surfaces, mean curvature flows, and harmonic maps, J. Reine Angew. Math.488 (1997) 1-35. Zbl0874.58007MR1465365
- [38] Ziemer W.P., Weakly differentiable functions, Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989. Zbl0692.46022MR1014685
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.