High-electric-field limit for the Vlasov–Maxwell–Fokker–Planck system

Mihai Bostan; Thierry Goudon

Annales de l'I.H.P. Analyse non linéaire (2008)

  • Volume: 25, Issue: 6, page 1221-1251
  • ISSN: 0294-1449

How to cite


Bostan, Mihai, and Goudon, Thierry. "High-electric-field limit for the Vlasov–Maxwell–Fokker–Planck system." Annales de l'I.H.P. Analyse non linéaire 25.6 (2008): 1221-1251. <http://eudml.org/doc/78830>.

author = {Bostan, Mihai, Goudon, Thierry},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {high-field limit; Vlasov-Maxwell-Fokker-Planck system; relative entropy},
language = {eng},
number = {6},
pages = {1221-1251},
publisher = {Elsevier},
title = {High-electric-field limit for the Vlasov–Maxwell–Fokker–Planck system},
url = {http://eudml.org/doc/78830},
volume = {25},
year = {2008},

AU - Bostan, Mihai
AU - Goudon, Thierry
TI - High-electric-field limit for the Vlasov–Maxwell–Fokker–Planck system
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2008
PB - Elsevier
VL - 25
IS - 6
SP - 1221
EP - 1251
LA - eng
KW - high-field limit; Vlasov-Maxwell-Fokker-Planck system; relative entropy
UR - http://eudml.org/doc/78830
ER -


  1. [1] Arnold A., Carrillo J.-A., Gamba I., Shu C.-W., Low and high field scaling limits for the Vlasov– and Wigner–Poisson–Fokker–Planck system, Transport Theory Statist. Phys.30 (2–3) (2001) 121-153. Zbl1106.82381MR1848592
  2. [2] Arnold A., Markowich P., Toscani G., Unterreiter A., On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations, Comm. Partial Differential Equations26 (1–2) (2001) 43-100. Zbl0982.35113MR1842428
  3. [3] Bakry D., Emery M., Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sér. I Math.299 (15) (1984) 775-778. Zbl0563.60068MR772092
  4. [4] Bardos C., Golse F., Levermore C.D., Fluid dynamic limits of kinetic equations II. Convergence proofs for the Boltzmann equation, Comm. Pure Appl. Math.XLVI (1993) 667-753. Zbl0817.76002MR1213991
  5. [5] Ben Abdallah N., Degond P., Markowich P., Schmeiser C., High field approximation of the spherical harmonics expansion model for semiconductors, Z. Angew. Math. Phys.52 (2) (2001) 201-230. Zbl1174.82345MR1834528
  6. [6] Bers A., Delcroix J.-L., Physique des plasmas, EDP Sciences, 2000. 
  7. [7] Berthelin F., Vasseur A., From kinetic equations to multidimensional isentropic gas dynamics before shocks, SIAM J. Math. Anal.36 (6) (2005) 1807-1835. Zbl1130.35090MR2178222
  8. [8] Bostan M., Goudon Th., Low field regime for the relativistic Vlasov–Maxwell–Fokker–Planck system; the one and one half dimensional case, Kinetic Related Models1 (1) (2008) 139-169. Zbl1185.35287MR2383720
  9. [9] Bouchut F., Existence and uniqueness of a global smooth solution for the Vlasov–Poisson–Fokker–Planck system in three dimensions, J. Funct. Anal.111 (1993) 239-258. Zbl0777.35059MR1200643
  10. [10] Bouchut F., Smoothing effect for the nonlinear Vlasov–Poisson–Fokker–Planck system, J. Differential Equations122 (1995) 225-238. Zbl0840.35053MR1355890
  11. [11] Bouchut F., Golse F., Pallard C., Classical solutions and the Glassey–Strauss theorem for the 3D Vlasov–Maxwell system, Arch. Ration. Mech. Anal.170 (1) (2003) 1-15. Zbl1044.76075MR2012645
  12. [12] Bourbaki N., Éléments de Mathématiques, Fascicule XXXV, Livre VI, Chapitre IX, Intégration, Hermann, Paris, 1969. Zbl0026.38902
  13. [13] Brenier Y., Convergence of the Vlasov–Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations25 (2000) 737-754. Zbl0970.35110MR1748352
  14. [14] Brenier Y., Mauser N., Puel M., Incompressible Euler and e-MHD as scaling limits of the Vlasov–Maxwell system, Commun. Math. Sci.1 (3) (2003) 437-447. Zbl1089.35048MR2069939
  15. [15] Carrillo J.-A., Soler J., On the initial value problem for the Vlasov–Poisson–Fokker–Planck system with initial data in L p spaces, Math. Methods Appl. Sci.18 (10) (1995) 825-839. Zbl0829.35096MR1343393
  16. [16] Carrillo J.-A., Labrunie S., Global solutions for the one-dimensional Vlasov–Maxwell system for laser-plasma interaction, Math. Models Methods Appl. Sci.16 (1) (2006) 19-57. Zbl1106.35110MR2194980
  17. [17] Cercignani C., Gamba I.M., Levermore C.D., High field approximations to a Boltzmann–Poisson system and boundary conditions in a semiconductor, Appl. Math. Lett.10 (4) (1997) 111-117. Zbl0894.76072MR1458163
  18. [18] Chandrasekhar S., Brownian motion, dynamical friction and stellar dynamics, Rev. Mod. Phys.21 (1949) 383-388. Zbl0036.43003MR31822
  19. [19] Csiszar I., Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar.2 (1967) 299-318. Zbl0157.25802MR219345
  20. [20] Degond P., Global existence of smooth solutions for the Vlasov–Fokker–Planck equations in 1 and 2 space dimensions, Ann. Scient. Ecole Normale Sup.19 (1986) 519-542. Zbl0619.35087MR875086
  21. [21] Degond P., Jungel A., High field approximation of the energy-transport model for semiconductors with non-parabolic band structure, Z. Angew. Math. Phys.52 (6) (2001) 1053-1070. Zbl0991.35043MR1877692
  22. [22] DiPerna R., Lions P.-L., Global weak solutions of Vlasov–Maxwell systems, Comm. Pure Appl. Math.42 (6) (1989) 729-757. Zbl0698.35128MR1003433
  23. [23] B. Dubroca, R. Duclous, F. Filbet, V. Tikhonchuk, High order resolution of the Maxwell–Fokker–Planck–Landau model intended for ICF/Fast ignition applications, CELIA-Université Bordeaux 1, in preparation. Zbl1221.78051
  24. [24] Glassey R., Strauss W., Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Ration. Mech. Anal.9 (1) (1986) 59-90. Zbl0595.35072MR816621
  25. [25] Golse F., Saint-Raymond L., The Vlasov–Poisson system with strong magnetic field in quasineutral regime, Math. Models Methods Appl. Sci.13 (5) (2003) 661-714. Zbl1053.82032MR1978931
  26. [26] Goudon T., Nieto J., Poupaud F., Soler J., Multidimensional high-field limit of the electrostatic Vlasov–Poisson–Fokker–Planck system, J. Differential Equations213 (2) (2005) 418-442. Zbl1072.35176MR2142374
  27. [27] Goudon T., Hydrodynamic limit for the Vlasov–Poisson–Fokker–Planck system: Analysis of the two-dimensional case, Math. Models Methods Appl. Sci.15 (5) (2005) 737-752. Zbl1074.82021MR2139941
  28. [28] Goudon T., Jabin P.-E., Vasseur A., Hydrodynamic limits for the Vlasov–Navier–Stokes equations. Part II: Fine particles regime, Indiana Univ. Math. J.53 (2004) 1517-1536. Zbl1085.35117MR2106334
  29. [29] Guo Y., The Vlasov–Maxwell–Boltzmann system near Maxwellians, Invent. Math.153 (3) (2003) 593-630. Zbl1029.82034MR2000470
  30. [30] V. Grandgirard, Y. Sarrazin, X. Garbet, G. Dif-Pradalier, P. Ghendrih, N. Crouseilles, G. Latu, E. Sonnendrucker, N. Besse, P. Bertrand, GYSELA, a full-f global gyrokinetic semi-Lagrangian code for ITG turbulence simulations, in: Proceedings of Theory of Fusion Plasmas, Varenna, 2006. Zbl1129.35462
  31. [31] Klainerman S., Staffilani G., A new approach to study the Vlasov–Maxwell system, Comm. Pure Appl. Anal.1 (1) (2002) 103-125. Zbl1037.35088MR1877669
  32. [32] Kullback S., A lower bound for discrimination information in terms of variation, IEEE Trans. Inform. Theory4 (1967) 126-127. 
  33. [33] Lai R., On the one and one-half dimensional relativistic Vlasov–Maxwell–Fokker–Planck system with non-vanishing viscosity, Math. Meth. Appl. Sci.21 (1998) 1287-1296. Zbl0911.35091MR1642550
  34. [34] Markowich P., Ringhofer C., Quantum hydrodynamics for semiconductors in the high field case, Appl. Math. Lett.7 (5) (1994) 37-41. Zbl0814.35128MR1350607
  35. [35] Nieto J., Poupaud F., Soler J., High-field limit of the Vlasov–Poisson–Fokker–Planck system, Arch. Ration. Mech. Anal.158 (2001) 29-59. Zbl1038.82068MR1834113
  36. [36] O'Dwyer B., Victory H.D., On classical solutions of the Vlasov–Poisson–Fokker–Planck system, Indiana Univ. Math. J.39 (1) (1990) 105-156. Zbl0674.60097MR1052014
  37. [37] Poupaud F., Runaway phenomena and fluid approximation under high fields in semiconductors kinetic theory, Z. Angew. Math. Mech.72 (1992) 359-372. Zbl0785.76067MR1178932
  38. [38] Poupaud F., Soler J., Parabolic limit and stability of the Vlasov–Poisson–Fokker–Planck system, Math. Models Methods Appl. Sci.10 (7) (2000) 1027-1045. Zbl1018.76048MR1780148
  39. [39] Puel M., Saint-Raymond L., Quasineutral limit for the relativistic Vlasov–Maxwell system, Asymptotic Anal.40 (2004) 303-352. Zbl1072.35181MR2107635
  40. [40] Saint-Raymond L., Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration. Mech. Anal.166 (2003) 47-80. Zbl1016.76071MR1952079
  41. [41] Vasseur A., Recent results on hydrodynamic limits, in: Dafermos C.M., Pokorny M. (Eds.), Handbook of Differential Equations: Evolutionary Equations, vol. 4, Elsevier, 2008. Zbl1185.35003MR2508169
  42. [42] Victory H.D., On the existence of global weak solutions for the Vlasov–Poisson–Fokker–Planck system, J. Math. Anal. Appl.160 (2) (1991) 525-555. Zbl0764.35024MR1126136
  43. [43] Wollman S., An existence and uniqueness theorem for the Vlasov–Maxwell system, Comm. Pure Appl. Math.37 (1984) 457-462. Zbl0592.45010MR745326
  44. [44] Yau H.T., Relative entropy and hydrodynamics of Ginzburg–Landau models, Lett. Math. Phys.22 (1) (1991) 63-80. Zbl0725.60120MR1121850
  45. [45] Yu H., Global classical solution of the Vlasov–Maxwell–Landau system near Maxwellians, J. Math. Phys.45 (11) (2004) 4360-4376. Zbl1064.82035MR2098143

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.