On the spectrum of a nonlinear planar problem
Francesca Gladiali; Massimo Grossi
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 1, page 191-222
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGladiali, Francesca, and Grossi, Massimo. "On the spectrum of a nonlinear planar problem." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 191-222. <http://eudml.org/doc/78835>.
@article{Gladiali2009,
author = {Gladiali, Francesca, Grossi, Massimo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Gelfand problem; first eigenvalue; first eigenfunction; Morse index; asymptotic behavior of the spectrum},
language = {eng},
number = {1},
pages = {191-222},
publisher = {Elsevier},
title = {On the spectrum of a nonlinear planar problem},
url = {http://eudml.org/doc/78835},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Gladiali, Francesca
AU - Grossi, Massimo
TI - On the spectrum of a nonlinear planar problem
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 191
EP - 222
LA - eng
KW - Gelfand problem; first eigenvalue; first eigenfunction; Morse index; asymptotic behavior of the spectrum
UR - http://eudml.org/doc/78835
ER -
References
top- [1] Bahri A., Li Y., Rey O., On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var.3 (1995) 67-93. Zbl0814.35032MR1384837
- [2] Bandle C., Isoperimetric Inequalities and Applications, Pitman, Boston, 1980. Zbl0436.35063MR572958
- [3] Berestycki H., Niremberg L., Varadhan R.S., The principal eigenvalue and maximum principle for second order elliptic operators in general domains, Comm. Pure Appl. Math47 (1994) 47-92. Zbl0806.35129MR1258192
- [4] Caffarelli L.A., Friedman A., Convexity of solutions of semilinear elliptic equations, Duke Math. J.52 (1985) 431-456. Zbl0599.35065MR792181
- [5] Caglioti E., Lions P.L., Marchioro C., Pulvirenti M., A special class of stationary flows for two-dimensional Euler equations: a Statistical mechanics description, Part II, Commun. Math. Phys.174 (1995) 229-260. Zbl0840.76002MR1362165
- [6] Caglioti E., Lions P.L., Marchioro C., Pulvirenti M., A special class of stationary flows for two-dimensional Euler equations: a Statistical Mechanics description, Commun. Math. Phys.143 (1992) 501-525. Zbl0745.76001MR1145596
- [7] Carrier G.F., Pearson C.E., Partial Differential Equations, Academic Press, Inc., 1988. Zbl0671.35001MR952148
- [8] S.Y.A. Chang, C.C. Chen, C.S. Lin, Extremal functions for a mean field equation in two dimension, preprint. Zbl1071.35040MR2055839
- [9] Chanillo S., Kiessling M.H.K., Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Comm. Math. Phys.160 (2) (1994) 217-238. Zbl0821.35044MR1262195
- [10] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (1991) 615-622. Zbl0768.35025MR1121147
- [11] Chen C.C., Lin C.S., On the symmetry of blowup solutions to a mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire18 (2001) 271-296. Zbl0995.35004MR1831657
- [12] Ding W., Jost J., Li J., Wang G., Existence results for mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire16 (1999) 653-666. Zbl0937.35055MR1712560
- [13] K. El Mehdi, M. Grossi, Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, preprint. Zbl1065.35112MR2033557
- [14] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer, 1998. Zbl1042.35002
- [15] Gladiali F., Grossi M., Some results for the Gelfand's problem, Comm. Partial Differential Equations29 (9–10) (2004) 1335-1364. Zbl1140.35417MR2103839
- [16] Grossi M., Pacella F., On an eigenvalue problem related to the critical exponent, Math. Z.250 (1) (2005) 225-256. Zbl1122.35087MR2136650
- [17] Kiessling M.H.K., Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math.46 (1) (1993) 27-56. Zbl0811.76002MR1193342
- [18] Li Y.Y., Harnack type inequality: the method of moving planes, Commun. Math. Phys.200 (1999) 421-444. Zbl0928.35057MR1673972
- [19] Melas A.D., On the nodal line of the second eigenfunction of the Laplacian in , J. Differential Geometry35 (1992) 255-263. Zbl0769.58056MR1152231
- [20] Nagasaki K., Suzuki T., Asymptotic analysis for two-dimensional elliptic eigenvalues problems with exponentially dominated nonlinearities, Asymptotic Anal.3 (1990) 173-188. Zbl0726.35011MR1061665
- [21] Protter M.H., Weinberger H.F., Maximum Principles in Differential Equations, Prentice-Hall, New Jersey, 1967. Zbl0153.13602MR219861
- [22] Suzuki T., Global analysis for a two-dimensional eigenvalue problem with exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire9 (1992) 367-398. Zbl0785.35045MR1186683
- [23] Tarantello G., Multiple condensate solutions for the Chern–Simons–Higgs theory, J. Math. Phys.37 (1996) 3769-3796. Zbl0863.58081MR1400816
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.