On the spectrum of a nonlinear planar problem

Francesca Gladiali; Massimo Grossi

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 1, page 191-222
  • ISSN: 0294-1449

How to cite

top

Gladiali, Francesca, and Grossi, Massimo. "On the spectrum of a nonlinear planar problem." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 191-222. <http://eudml.org/doc/78835>.

@article{Gladiali2009,
author = {Gladiali, Francesca, Grossi, Massimo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Gelfand problem; first eigenvalue; first eigenfunction; Morse index; asymptotic behavior of the spectrum},
language = {eng},
number = {1},
pages = {191-222},
publisher = {Elsevier},
title = {On the spectrum of a nonlinear planar problem},
url = {http://eudml.org/doc/78835},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Gladiali, Francesca
AU - Grossi, Massimo
TI - On the spectrum of a nonlinear planar problem
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 191
EP - 222
LA - eng
KW - Gelfand problem; first eigenvalue; first eigenfunction; Morse index; asymptotic behavior of the spectrum
UR - http://eudml.org/doc/78835
ER -

References

top
  1. [1] Bahri A., Li Y., Rey O., On a variational problem with lack of compactness: the topological effect of the critical points at infinity, Calc. Var.3 (1995) 67-93. Zbl0814.35032MR1384837
  2. [2] Bandle C., Isoperimetric Inequalities and Applications, Pitman, Boston, 1980. Zbl0436.35063MR572958
  3. [3] Berestycki H., Niremberg L., Varadhan R.S., The principal eigenvalue and maximum principle for second order elliptic operators in general domains, Comm. Pure Appl. Math47 (1994) 47-92. Zbl0806.35129MR1258192
  4. [4] Caffarelli L.A., Friedman A., Convexity of solutions of semilinear elliptic equations, Duke Math. J.52 (1985) 431-456. Zbl0599.35065MR792181
  5. [5] Caglioti E., Lions P.L., Marchioro C., Pulvirenti M., A special class of stationary flows for two-dimensional Euler equations: a Statistical mechanics description, Part II, Commun. Math. Phys.174 (1995) 229-260. Zbl0840.76002MR1362165
  6. [6] Caglioti E., Lions P.L., Marchioro C., Pulvirenti M., A special class of stationary flows for two-dimensional Euler equations: a Statistical Mechanics description, Commun. Math. Phys.143 (1992) 501-525. Zbl0745.76001MR1145596
  7. [7] Carrier G.F., Pearson C.E., Partial Differential Equations, Academic Press, Inc., 1988. Zbl0671.35001MR952148
  8. [8] S.Y.A. Chang, C.C. Chen, C.S. Lin, Extremal functions for a mean field equation in two dimension, preprint. Zbl1071.35040MR2055839
  9. [9] Chanillo S., Kiessling M.H.K., Rotational symmetry of solutions of some nonlinear problems in statistical mechanics and in geometry, Comm. Math. Phys.160 (2) (1994) 217-238. Zbl0821.35044MR1262195
  10. [10] Chen W., Li C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J.63 (1991) 615-622. Zbl0768.35025MR1121147
  11. [11] Chen C.C., Lin C.S., On the symmetry of blowup solutions to a mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire18 (2001) 271-296. Zbl0995.35004MR1831657
  12. [12] Ding W., Jost J., Li J., Wang G., Existence results for mean field equation, Ann. Inst. H. Poincaré Anal. Non Linéaire16 (1999) 653-666. Zbl0937.35055MR1712560
  13. [13] K. El Mehdi, M. Grossi, Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, preprint. Zbl1065.35112MR2033557
  14. [14] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer, 1998. Zbl1042.35002
  15. [15] Gladiali F., Grossi M., Some results for the Gelfand's problem, Comm. Partial Differential Equations29 (9–10) (2004) 1335-1364. Zbl1140.35417MR2103839
  16. [16] Grossi M., Pacella F., On an eigenvalue problem related to the critical exponent, Math. Z.250 (1) (2005) 225-256. Zbl1122.35087MR2136650
  17. [17] Kiessling M.H.K., Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math.46 (1) (1993) 27-56. Zbl0811.76002MR1193342
  18. [18] Li Y.Y., Harnack type inequality: the method of moving planes, Commun. Math. Phys.200 (1999) 421-444. Zbl0928.35057MR1673972
  19. [19] Melas A.D., On the nodal line of the second eigenfunction of the Laplacian in R 2 , J. Differential Geometry35 (1992) 255-263. Zbl0769.58056MR1152231
  20. [20] Nagasaki K., Suzuki T., Asymptotic analysis for two-dimensional elliptic eigenvalues problems with exponentially dominated nonlinearities, Asymptotic Anal.3 (1990) 173-188. Zbl0726.35011MR1061665
  21. [21] Protter M.H., Weinberger H.F., Maximum Principles in Differential Equations, Prentice-Hall, New Jersey, 1967. Zbl0153.13602MR219861
  22. [22] Suzuki T., Global analysis for a two-dimensional eigenvalue problem with exponential nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire9 (1992) 367-398. Zbl0785.35045MR1186683
  23. [23] Tarantello G., Multiple condensate solutions for the Chern–Simons–Higgs theory, J. Math. Phys.37 (1996) 3769-3796. Zbl0863.58081MR1400816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.