Existence results for mean field equations

Weiyue Ding; Jürgen Jost; Jiayu Li; Guofang Wang

Annales de l'I.H.P. Analyse non linéaire (1999)

  • Volume: 16, Issue: 5, page 653-666
  • ISSN: 0294-1449

How to cite

top

Ding, Weiyue, et al. "Existence results for mean field equations." Annales de l'I.H.P. Analyse non linéaire 16.5 (1999): 653-666. <http://eudml.org/doc/78478>.

@article{Ding1999,
author = {Ding, Weiyue, Jost, Jürgen, Li, Jiayu, Wang, Guofang},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {planar domain; Onsager's vortex model; turbulent Euler flows; Moser-Trudinger inequality; compact Riemann surface},
language = {eng},
number = {5},
pages = {653-666},
publisher = {Gauthier-Villars},
title = {Existence results for mean field equations},
url = {http://eudml.org/doc/78478},
volume = {16},
year = {1999},
}

TY - JOUR
AU - Ding, Weiyue
AU - Jost, Jürgen
AU - Li, Jiayu
AU - Wang, Guofang
TI - Existence results for mean field equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1999
PB - Gauthier-Villars
VL - 16
IS - 5
SP - 653
EP - 666
LA - eng
KW - planar domain; Onsager's vortex model; turbulent Euler flows; Moser-Trudinger inequality; compact Riemann surface
UR - http://eudml.org/doc/78478
ER -

References

top
  1. [1] T. Aubin, Nonlinear analysis on manifolds, Springer-Verlag, 1982. Zbl0512.53044MR681859
  2. [2] A. Bahri and J.M. Coron, Sur une equation elliptique non lineaire avec l'exposant critique de Sobolev, C. R. Acad. Sci. Paris Ser. I, Vol. 301, 1985, pp. 345-348. Zbl0601.35040MR808623
  3. [3] H. Brezis and F. Merle, Uniform estimates and blow up behavior for solutions of -Δu = V(x)eu in two dimensions, Comm. Partial Diff. Equat., Vol. 16, 1991, pp. 1223-1253. Zbl0746.35006MR1132783
  4. [4] E.P. Caglioti, P.L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Commun. Math. Phys., Vol. 143, 1992, pp. 501-525. Zbl0745.76001MR1145596
  5. [5] E. Caglioti, P.L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Part II, Commun. Math. Phys., Vol. 174, 1995, pp. 229-260. Zbl0840.76002MR1362165
  6. [6] W.X. Chen and C. Li, Prescribing Gaussian curvature on surfaces with conical singularities, J. Geom. Anal., Vol. 1, 1991, pp. 359-372. Zbl0739.58012MR1129348
  7. [7] W. Ding, J. Jost, J. Li and G. Wang, The differential equation Δu = 8π - 8πheu on a compact Riemann surface, Asian J. Math., Vol. 1, 1997, pp. 230-248. Zbl0955.58010MR1491984
  8. [8] J. Kazdan and F. Warner, Curvature functions for compact 2-manifolds, Ann. Math., Vol. 99, 1974 , pp. 14-47. Zbl0273.53034MR343205
  9. [9] M.K.H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math., Vol. 46, 1993, pp. 27-56. Zbl0811.76002MR1193342
  10. [10] Yan Yan Li, -Δu = λ(Veu/∫MVeu- W) on Riemann surfaces, preprint, 
  11. [11] Yan Yan Li and I. Shafrir, Blow-up analysis for solutions of -Δu = Veu in dimension two, Indiana Univ. Math. J., Vol. 43, 1994, pp. 1255-1270. Zbl0842.35011MR1322618
  12. [12] C. Marchioro and M. Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Appl. Math. Sci., Vol. 96, Springer-Verlag, 1994. Zbl0789.76002MR1245492
  13. [13] J. Moser, A sharp form of an inequality of N. Trudinger, Indiana Univ. Math. J., Vol. 20, 1971, pp. 1077-1092. Zbl0213.13001
  14. [14] M. Nolasco and G. Tarantello, On a sharp Sobolev type inequality on two dimensional compact manifolds, preprint. Zbl0980.46022MR1664542
  15. [15] R.S. Palais, Critical point theory and the minimax principle, Global Analysis, Proc. Sympos. Pure Math., Vol. 15, 1968, pp. 185-212. Zbl0212.28902MR264712
  16. [16] M. Struwe, The evolution of harmonic mappings with free boundaries, Manuscr. Math., Vol. 70, 1991, pp. 373-384. Zbl0724.58022MR1092143
  17. [17] M. Struwe, Multiple solutions to the Dirichlet problem for the equation of prescribed mean curvature , Analysis, et cetera, P. H. RABINOWITZ and E. ZEHNDER Eds., 1990, pp. 639-666. Zbl0703.53049MR1039366
  18. [18] M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, preprint. Zbl0912.58046MR1619043
  19. [19] T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. H. Poincaré, Anal. Non Lineaire, Vol. 9, 1992, pp. 367-398. Zbl0785.35045MR1186683

Citations in EuDML Documents

top
  1. Daniele Bartolucci, Problemi ellittici non lineari con dati singolari e applicazioni alla teoria elettrodebole di Glashow-Salam-Weinberg
  2. Francesca Gladiali, Massimo Grossi, On the spectrum of a nonlinear planar problem
  3. Francesca de Marchis, Multiplicity of Solutions for a Mean Field Equation on Compact Surfaces
  4. Pierpaolo Esposito, Massimo Grossi, Angela Pistoia, On the existence of blowing-up solutions for a mean field equation
  5. Zindine Djadli, Opérateurs géométriques et géométrie conforme

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.