Anti-symmetric hamiltonians (II) : variational resolutions for Navier-Stokes and other nonlinear evolutions

Nassif Ghoussoub; Abbas Moameni

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 1, page 223-255
  • ISSN: 0294-1449

How to cite

top

Ghoussoub, Nassif, and Moameni, Abbas. "Anti-symmetric hamiltonians (II) : variational resolutions for Navier-Stokes and other nonlinear evolutions." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 223-255. <http://eudml.org/doc/78837>.

@article{Ghoussoub2009,
author = {Ghoussoub, Nassif, Moameni, Abbas},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {anti-selfdual Lagrangians; selfdual variational principles; non-linear evaluation equations},
language = {eng},
number = {1},
pages = {223-255},
publisher = {Elsevier},
title = {Anti-symmetric hamiltonians (II) : variational resolutions for Navier-Stokes and other nonlinear evolutions},
url = {http://eudml.org/doc/78837},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Ghoussoub, Nassif
AU - Moameni, Abbas
TI - Anti-symmetric hamiltonians (II) : variational resolutions for Navier-Stokes and other nonlinear evolutions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 223
EP - 255
LA - eng
KW - anti-selfdual Lagrangians; selfdual variational principles; non-linear evaluation equations
UR - http://eudml.org/doc/78837
ER -

References

top
  1. [1] Aubin J.P., Ekeland I., Applied Nonlinear Analysis, Reprint of the 1984 original, Dover Publications, Inc., Mineola, NY, 2006. Zbl1115.47049MR2303896
  2. [2] Brezis H., Nirenberg L., Stampacchia G., A remark on Ky Fan's minimax principle, Bollettino U. M.I. (1972) 293-300. Zbl0264.49013MR324498
  3. [3] Ekeland I., Temam R., Convex Analysis and Variational Problems, Classics in Applied Mathematics, vol. 28, SIAM, 1999. Zbl0939.49002MR1727362
  4. [4] Ghoussoub N., Anti-selfdual Lagrangians: Variational resolutions of non self-adjoint equations and dissipative evolutions, Ann. Inst. H. Poincaré Analyse Non Linéaire24 (2007) 171-205. Zbl1170.35308MR2310692
  5. [5] Ghoussoub N., Anti-symmetric Hamiltonians: Variational resolution of Navier–Stokes equations and other nonlinear evolutions, Comm. Pure Appl. Math.60 (5) (2007) 619-653. Zbl1119.35048MR2292952
  6. [6] N. Ghoussoub, Selfdual Partial Differential Systems and Their Variational Principles, Universitext Series, Springer-Verlag, 2007, in press, 350 pp.. Zbl05366497
  7. [7] Leray J., Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math.63 (1934) 193-248. MR1555394JFM60.0726.05
  8. [8] Masuda K., Weak solutions of Navier–Stokes equations, Tohoku Math. J.36 (1984) 623-646. Zbl0568.35077MR767409
  9. [9] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, 1997. Zbl0871.35001MR1441312

NotesEmbed ?

top

You must be logged in to post comments.