Anti-symmetric hamiltonians (II) : variational resolutions for Navier-Stokes and other nonlinear evolutions

Nassif Ghoussoub; Abbas Moameni

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 1, page 223-255
  • ISSN: 0294-1449

How to cite

top

Ghoussoub, Nassif, and Moameni, Abbas. "Anti-symmetric hamiltonians (II) : variational resolutions for Navier-Stokes and other nonlinear evolutions." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 223-255. <http://eudml.org/doc/78837>.

@article{Ghoussoub2009,
author = {Ghoussoub, Nassif, Moameni, Abbas},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {anti-selfdual Lagrangians; selfdual variational principles; non-linear evaluation equations},
language = {eng},
number = {1},
pages = {223-255},
publisher = {Elsevier},
title = {Anti-symmetric hamiltonians (II) : variational resolutions for Navier-Stokes and other nonlinear evolutions},
url = {http://eudml.org/doc/78837},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Ghoussoub, Nassif
AU - Moameni, Abbas
TI - Anti-symmetric hamiltonians (II) : variational resolutions for Navier-Stokes and other nonlinear evolutions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 223
EP - 255
LA - eng
KW - anti-selfdual Lagrangians; selfdual variational principles; non-linear evaluation equations
UR - http://eudml.org/doc/78837
ER -

References

top
  1. [1] Aubin J.P., Ekeland I., Applied Nonlinear Analysis, Reprint of the 1984 original, Dover Publications, Inc., Mineola, NY, 2006. Zbl1115.47049MR2303896
  2. [2] Brezis H., Nirenberg L., Stampacchia G., A remark on Ky Fan's minimax principle, Bollettino U. M.I. (1972) 293-300. Zbl0264.49013MR324498
  3. [3] Ekeland I., Temam R., Convex Analysis and Variational Problems, Classics in Applied Mathematics, vol. 28, SIAM, 1999. Zbl0939.49002MR1727362
  4. [4] Ghoussoub N., Anti-selfdual Lagrangians: Variational resolutions of non self-adjoint equations and dissipative evolutions, Ann. Inst. H. Poincaré Analyse Non Linéaire24 (2007) 171-205. Zbl1170.35308MR2310692
  5. [5] Ghoussoub N., Anti-symmetric Hamiltonians: Variational resolution of Navier–Stokes equations and other nonlinear evolutions, Comm. Pure Appl. Math.60 (5) (2007) 619-653. Zbl1119.35048MR2292952
  6. [6] N. Ghoussoub, Selfdual Partial Differential Systems and Their Variational Principles, Universitext Series, Springer-Verlag, 2007, in press, 350 pp.. Zbl05366497
  7. [7] Leray J., Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math.63 (1934) 193-248. MR1555394JFM60.0726.05
  8. [8] Masuda K., Weak solutions of Navier–Stokes equations, Tohoku Math. J.36 (1984) 623-646. Zbl0568.35077MR767409
  9. [9] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68, Springer-Verlag, 1997. Zbl0871.35001MR1441312

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.