Decay of geometry for Fibonacci critical covering maps of the circle

Eduardo Colli; Marcio L. do Nascimento; Edson Vargas

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 4, page 1533-1551
  • ISSN: 0294-1449

How to cite

top

Colli, Eduardo, do Nascimento, Marcio L., and Vargas, Edson. "Decay of geometry for Fibonacci critical covering maps of the circle." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1533-1551. <http://eudml.org/doc/78901>.

@article{Colli2009,
author = {Colli, Eduardo, do Nascimento, Marcio L., Vargas, Edson},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {circle maps; covering maps; Fibonacci combinatorics; decay of geometry; invariant measures},
language = {eng},
number = {4},
pages = {1533-1551},
publisher = {Elsevier},
title = {Decay of geometry for Fibonacci critical covering maps of the circle},
url = {http://eudml.org/doc/78901},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Colli, Eduardo
AU - do Nascimento, Marcio L.
AU - Vargas, Edson
TI - Decay of geometry for Fibonacci critical covering maps of the circle
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1533
EP - 1551
LA - eng
KW - circle maps; covering maps; Fibonacci combinatorics; decay of geometry; invariant measures
UR - http://eudml.org/doc/78901
ER -

References

top
  1. [1] Bruin H., Keller G., Nowicki T., van Strien S., Wild Cantor attractors exist, Ann. of Math. (2)143 (1996) 97-130. Zbl0848.58016MR1370759
  2. [2] Bruin H., van Strien S., Existence of absolutely continuous invariant probability measures for multimodal maps, in: Global Analysis of Dynamical Systems, Inst. Phys., Bristol, 2001, pp. 433-447, 17 (4) (2004) 749–782 (electronic). Zbl1198.37066MR2083467
  3. [3] Bruin H., Letelier J.R., Shen W., van Strien S., Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math.172 (3) (2008) 509-533. Zbl1138.37019MR2393079
  4. [4] Collet P., Eckmann J.P., Iterated Maps on the Interval as Dynamical Systems, Prog. Phys., vol. 1, Birkhäuser Boston, Massachusetts, 1980. Zbl0458.58002MR613981
  5. [5] Collet P., Eckmann J.P., Positive Liapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems3 (1) (1983) 13-46. Zbl0532.28014MR743027
  6. [6] de Melo W., van Strien S., One-dimensional Dynamics, Springer-Verlag, Berlin, 1993. Zbl0791.58003MR1239171
  7. [7] Graczyk J., Świa̧tek G., Induced expansions for quadratic polynomials, Ann. Sci. École Norm. Sup. (4) (1996) 399-482. Zbl0867.58048MR1386222
  8. [8] Graczyk J., Świa̧tek G., Generic hyperbolicity in the logistic family, Ann. of Math. (2) (1997) 1-52. Zbl0936.37015MR1469316
  9. [9] Graczyk J., Świa̧tek G., The Real Fatou Conjecture, Ann. of Math. Stud., vol. 144, Princeton University Press, Princeton, 1998. Zbl0910.30001MR1657075
  10. [10] Graczyk J., Sands D., Świa̧tek G., Metric attractors for smooth unimodal maps, Ann. of Math. (2)159 (2) (2004) 725-740. Zbl1055.37041MR2081438
  11. [11] Graczyk J., Sands D., Świa̧tek G., Decay of geometry for unimodal maps: Negative Schwarzian case, Ann. of Math. (2)161 (2) (2005) 613-677. Zbl1091.37015MR2153397
  12. [12] Guckenheimer J., Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys.70 (2) (1979) 133-160. Zbl0429.58012MR553966
  13. [13] Guckenheimer J., Johnson S., Distortion of S-unimodal maps, Ann. of Math. (2)132 (1) (1990) 71-130. Zbl0708.58007MR1059936
  14. [14] Hofbauer F., Keller G., Some remarks on recent results about S-unimodal maps, Ann. Inst. H. Poincaré Phys. Théor.53 (4) (1990) 413-425. Zbl0721.58018MR1096100
  15. [15] Jakobson M.V., Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys.81 (1) (1981) 39-88. Zbl0497.58017MR630331
  16. [16] Jakobson M.V., Świa̧tek G., Metric properties of non-renormalizable S-unimodal maps I. Induced expansion and invariant measures, Ergodic Theory Dynam. Systems14 (4) (1994) 721-755. Zbl0830.58019MR1304140
  17. [17] Keller G., Nowicki T., Fibonacci maps re(al)visited, Ergodic Theory Dynam. Systems15 (1) (1995) 99-120. Zbl0853.58072MR1314971
  18. [18] Krzyzewski K., Slenk W., On invariant measures for expanding differentiable mappings, Studia Math.3 (1969) 83-92. Zbl0176.00901MR245761
  19. [19] Lasota A., Yorke J.A., On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc.186 (1974) 481-488, (1973). Zbl0298.28015MR335758
  20. [20] Levin G., Bounds for maps of the interval with one reflecting critical point I, Fund. Math.157 (2–3) (1998) 287-298. Zbl0915.58028MR1636895
  21. [21] Levin G., van Strien S., Bounds for maps of an interval with one critical point of inflection type. II, Invent. Math.141 (2) (2000) 399-465. Zbl0986.37027MR1775218
  22. [22] Levin G., Świa̧tek G., Universality of critical circle covers, Comm. Math. Phys.228 (2002) 371-399. Zbl1119.37312MR1911739
  23. [23] Lyubich M., Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math. (2)140 (2) (1994) 347-404. Zbl0821.58014MR1298717
  24. [24] Lyubich M., Milnor J., The Fibonacci unimodal map, J. Amer. Math. Soc.6 (2) (1993) 425-457. Zbl0778.58040MR1182670
  25. [25] Lyubich M., Dynamics of quadratic polynomials. I, II, Acta Math.178 (2) (1997) 185-247, 247–297. Zbl0908.58053MR1459261
  26. [26] Martens M., Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Systems14 (2) (1994) 331-349. Zbl0809.58026MR1279474
  27. [27] Martens M., Nowicki T., Invariant measures for typical quadratic maps, Astérisque261 (2000) 239-252, xiii. Zbl0939.37020MR1755443
  28. [28] Milnor J., On the concept of attractor, Comm. Math. Phys.99 (2) (1985) 177-195. Zbl0595.58028MR790735
  29. [29] Misiurewicz M., Absolutely continuous measures for certain maps of an interval, Inst. Hautes Études Sci. Publ. Math.53 (1981) 17-51. Zbl0477.58020MR623533
  30. [30] Misiurewicz M., Rodrigues A., Double standard maps, Comm. Math. Phys.273 (1) (2007) 37-65. Zbl1123.37016MR2308749
  31. [31] Nowicki T., van Strien S., Invariant measures exist under a summability condition for unimodal maps, Invent. Math.105 (1) (1991) 123-136. Zbl0736.58030MR1109621
  32. [32] Ruelle D., Applications conservant une mesure absolument continue par raport à dxsur [ 0 , 1 ] , Comm. Math. Phys.55 (1) (1977) 47-51. Zbl0362.28013MR467840
  33. [33] Shen W., Decay of geometry for unimodal maps: An elementary proof, Ann. of Math. (2)163 (2) (2006) 383-404. Zbl1097.37032MR2199221
  34. [34] van Strien S., Hyperbolicity and invariant measures for general C 2 interval maps satisfying the Misiurewicz condition, Comm. Math. Phys.128 (3) (1990) 437-495. Zbl0702.58020MR1045879
  35. [35] van Strien S., Vargas E., Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc.17 (4) (2004) 749-782, (electronic). Zbl1073.37043MR2083467

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.