Decay of geometry for Fibonacci critical covering maps of the circle
Eduardo Colli; Marcio L. do Nascimento; Edson Vargas
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 4, page 1533-1551
- ISSN: 0294-1449
Access Full Article
topHow to cite
topColli, Eduardo, do Nascimento, Marcio L., and Vargas, Edson. "Decay of geometry for Fibonacci critical covering maps of the circle." Annales de l'I.H.P. Analyse non linéaire 26.4 (2009): 1533-1551. <http://eudml.org/doc/78901>.
@article{Colli2009,
author = {Colli, Eduardo, do Nascimento, Marcio L., Vargas, Edson},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {circle maps; covering maps; Fibonacci combinatorics; decay of geometry; invariant measures},
language = {eng},
number = {4},
pages = {1533-1551},
publisher = {Elsevier},
title = {Decay of geometry for Fibonacci critical covering maps of the circle},
url = {http://eudml.org/doc/78901},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Colli, Eduardo
AU - do Nascimento, Marcio L.
AU - Vargas, Edson
TI - Decay of geometry for Fibonacci critical covering maps of the circle
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 4
SP - 1533
EP - 1551
LA - eng
KW - circle maps; covering maps; Fibonacci combinatorics; decay of geometry; invariant measures
UR - http://eudml.org/doc/78901
ER -
References
top- [1] Bruin H., Keller G., Nowicki T., van Strien S., Wild Cantor attractors exist, Ann. of Math. (2)143 (1996) 97-130. Zbl0848.58016MR1370759
- [2] Bruin H., van Strien S., Existence of absolutely continuous invariant probability measures for multimodal maps, in: Global Analysis of Dynamical Systems, Inst. Phys., Bristol, 2001, pp. 433-447, 17 (4) (2004) 749–782 (electronic). Zbl1198.37066MR2083467
- [3] Bruin H., Letelier J.R., Shen W., van Strien S., Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math.172 (3) (2008) 509-533. Zbl1138.37019MR2393079
- [4] Collet P., Eckmann J.P., Iterated Maps on the Interval as Dynamical Systems, Prog. Phys., vol. 1, Birkhäuser Boston, Massachusetts, 1980. Zbl0458.58002MR613981
- [5] Collet P., Eckmann J.P., Positive Liapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems3 (1) (1983) 13-46. Zbl0532.28014MR743027
- [6] de Melo W., van Strien S., One-dimensional Dynamics, Springer-Verlag, Berlin, 1993. Zbl0791.58003MR1239171
- [7] Graczyk J., Świa̧tek G., Induced expansions for quadratic polynomials, Ann. Sci. École Norm. Sup. (4) (1996) 399-482. Zbl0867.58048MR1386222
- [8] Graczyk J., Świa̧tek G., Generic hyperbolicity in the logistic family, Ann. of Math. (2) (1997) 1-52. Zbl0936.37015MR1469316
- [9] Graczyk J., Świa̧tek G., The Real Fatou Conjecture, Ann. of Math. Stud., vol. 144, Princeton University Press, Princeton, 1998. Zbl0910.30001MR1657075
- [10] Graczyk J., Sands D., Świa̧tek G., Metric attractors for smooth unimodal maps, Ann. of Math. (2)159 (2) (2004) 725-740. Zbl1055.37041MR2081438
- [11] Graczyk J., Sands D., Świa̧tek G., Decay of geometry for unimodal maps: Negative Schwarzian case, Ann. of Math. (2)161 (2) (2005) 613-677. Zbl1091.37015MR2153397
- [12] Guckenheimer J., Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys.70 (2) (1979) 133-160. Zbl0429.58012MR553966
- [13] Guckenheimer J., Johnson S., Distortion of S-unimodal maps, Ann. of Math. (2)132 (1) (1990) 71-130. Zbl0708.58007MR1059936
- [14] Hofbauer F., Keller G., Some remarks on recent results about S-unimodal maps, Ann. Inst. H. Poincaré Phys. Théor.53 (4) (1990) 413-425. Zbl0721.58018MR1096100
- [15] Jakobson M.V., Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys.81 (1) (1981) 39-88. Zbl0497.58017MR630331
- [16] Jakobson M.V., Świa̧tek G., Metric properties of non-renormalizable S-unimodal maps I. Induced expansion and invariant measures, Ergodic Theory Dynam. Systems14 (4) (1994) 721-755. Zbl0830.58019MR1304140
- [17] Keller G., Nowicki T., Fibonacci maps re(al)visited, Ergodic Theory Dynam. Systems15 (1) (1995) 99-120. Zbl0853.58072MR1314971
- [18] Krzyzewski K., Slenk W., On invariant measures for expanding differentiable mappings, Studia Math.3 (1969) 83-92. Zbl0176.00901MR245761
- [19] Lasota A., Yorke J.A., On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc.186 (1974) 481-488, (1973). Zbl0298.28015MR335758
- [20] Levin G., Bounds for maps of the interval with one reflecting critical point I, Fund. Math.157 (2–3) (1998) 287-298. Zbl0915.58028MR1636895
- [21] Levin G., van Strien S., Bounds for maps of an interval with one critical point of inflection type. II, Invent. Math.141 (2) (2000) 399-465. Zbl0986.37027MR1775218
- [22] Levin G., Świa̧tek G., Universality of critical circle covers, Comm. Math. Phys.228 (2002) 371-399. Zbl1119.37312MR1911739
- [23] Lyubich M., Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math. (2)140 (2) (1994) 347-404. Zbl0821.58014MR1298717
- [24] Lyubich M., Milnor J., The Fibonacci unimodal map, J. Amer. Math. Soc.6 (2) (1993) 425-457. Zbl0778.58040MR1182670
- [25] Lyubich M., Dynamics of quadratic polynomials. I, II, Acta Math.178 (2) (1997) 185-247, 247–297. Zbl0908.58053MR1459261
- [26] Martens M., Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Systems14 (2) (1994) 331-349. Zbl0809.58026MR1279474
- [27] Martens M., Nowicki T., Invariant measures for typical quadratic maps, Astérisque261 (2000) 239-252, xiii. Zbl0939.37020MR1755443
- [28] Milnor J., On the concept of attractor, Comm. Math. Phys.99 (2) (1985) 177-195. Zbl0595.58028MR790735
- [29] Misiurewicz M., Absolutely continuous measures for certain maps of an interval, Inst. Hautes Études Sci. Publ. Math.53 (1981) 17-51. Zbl0477.58020MR623533
- [30] Misiurewicz M., Rodrigues A., Double standard maps, Comm. Math. Phys.273 (1) (2007) 37-65. Zbl1123.37016MR2308749
- [31] Nowicki T., van Strien S., Invariant measures exist under a summability condition for unimodal maps, Invent. Math.105 (1) (1991) 123-136. Zbl0736.58030MR1109621
- [32] Ruelle D., Applications conservant une mesure absolument continue par raport à dxsur , Comm. Math. Phys.55 (1) (1977) 47-51. Zbl0362.28013MR467840
- [33] Shen W., Decay of geometry for unimodal maps: An elementary proof, Ann. of Math. (2)163 (2) (2006) 383-404. Zbl1097.37032MR2199221
- [34] van Strien S., Hyperbolicity and invariant measures for general interval maps satisfying the Misiurewicz condition, Comm. Math. Phys.128 (3) (1990) 437-495. Zbl0702.58020MR1045879
- [35] van Strien S., Vargas E., Real bounds, ergodicity and negative Schwarzian for multimodal maps, J. Amer. Math. Soc.17 (4) (2004) 749-782, (electronic). Zbl1073.37043MR2083467
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.