A conservative evolution of the Brownian excursion.
We formulate two results on controllability properties of the 3D Navier–Stokes (NS) system. They concern the approximate controllability and exact controllability in finite-dimensional projections of the problem in question. As a consequence, we obtain the existence of a strong solution of the Cauchy problem for the 3D NS system with an arbitrary initial function and a large class of right-hand sides. We also discuss some qualitative properties of admissible weak solutions for randomly forced NS...
Inspired by the work of Zhidkov on the KdV equation, we perform a construction of weighted Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. The resulting measures are supported by Sobolev spaces of increasing regularity. We also prove a property on the support of these measures leading to the conjecture that they are indeed invariant by the flow of the Benjamin-Ono equation.
We focus on invariant measures of an interacting particle system in the case when the set of sites, on which the particles move, has a structure different from the usually considered set . We have chosen the tree structure with the dynamics that leads to one of the classical particle systems, called the zero range process. The zero range process with the constant speed function corresponds to an infinite system of queues and the arrangement of servers in the tree structure is natural in a number...
In this paper we consider the periodic Benjemin-Ono equation.We establish the invariance of the Gibbs measure associated to this equation, thus answering a question raised in Tzvetkov [28]. As an intermediate step, we also obtain a local well-posedness result in Besov-type spaces rougher than , extending the well-posedness result of Molinet [20].
Let for i = 1,..., N be contracting similarities, let be a probability vector and let ν be a probability measure on with compact support. It is well known that there exists a unique inhomogeneous self-similar probability measure μ on such that . We give satisfactory estimates for the lower and upper bounds of the spectra of inhomogeneous self-similar measures. The case in which there are a countable number of contracting similarities and probabilities is considered. In particular, we...
Using recent results on measure theory and algebraic geometry, we show how semidefinite programming can be used to construct invariant measures of one-dimensional discrete dynamical systems (iterated maps on a real interval). In particular we show that both discrete measures (corresponding to finite cycles) and continuous measures (corresponding to chaotic behavior) can be recovered using standard software.
Given a Hilbert space with a Borel probability measure , we prove the -dissipativity in of a Kolmogorov operator that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.
Some rigorous results connected with the conventional statistical theory of turbulence in both the two- and three-dimensional cases are discussed. Such results are based on the concept of stationary statistical solution, related to the notion of ensemble average for turbulence in statistical equilibrium, and concern, in particular, the mean kinetic energy and enstrophy fluxes and their corresponding cascades. Some of the results are developed here in the case of nonsmooth boundaries and a less regular...