Invariant measures exist under a summability condition for unimodal maps.

Tomasz Nowicki; Sebastian van Strien

Inventiones mathematicae (1991)

  • Volume: 105, Issue: 1, page 123-136
  • ISSN: 0020-9910; 1432-1297/e

How to cite

top

Nowicki, Tomasz, and Strien, Sebastian van. "Invariant measures exist under a summability condition for unimodal maps.." Inventiones mathematicae 105.1 (1991): 123-136. <http://eudml.org/doc/143905>.

@article{Nowicki1991,
author = {Nowicki, Tomasz, Strien, Sebastian van},
journal = {Inventiones mathematicae},
keywords = {unimodal maps; iterations; negative Schwarzian derivative; critical value; invariant probability measure},
number = {1},
pages = {123-136},
title = {Invariant measures exist under a summability condition for unimodal maps.},
url = {http://eudml.org/doc/143905},
volume = {105},
year = {1991},
}

TY - JOUR
AU - Nowicki, Tomasz
AU - Strien, Sebastian van
TI - Invariant measures exist under a summability condition for unimodal maps.
JO - Inventiones mathematicae
PY - 1991
VL - 105
IS - 1
SP - 123
EP - 136
KW - unimodal maps; iterations; negative Schwarzian derivative; critical value; invariant probability measure
UR - http://eudml.org/doc/143905
ER -

Citations in EuDML Documents

top
  1. Tomasz Nowicki, Some dynamical properties of S-unimodal maps
  2. Eduardo Colli, Marcio L. do Nascimento, Edson Vargas, Decay of geometry for Fibonacci critical covering maps of the circle
  3. Henk Bruin, Stefano Luzzatto, Sebastian Van Strien, Decay of correlations in one-dimensional dynamics
  4. Henk Bruin, Weixiao Shen, Sebastian Van Strien, Existence of unique SRB-measures is typical for real unicritical polynomial families
  5. Viviane Baladi, Daniel Smania, Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps

NotesEmbed ?

top

You must be logged in to post comments.