Finding new families of rank-one convex polynomials

Luís Bandeira; Pablo Pedregal

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 5, page 1621-1634
  • ISSN: 0294-1449

How to cite

top

Bandeira, Luís, and Pedregal, Pablo. "Finding new families of rank-one convex polynomials." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1621-1634. <http://eudml.org/doc/78906>.

@article{Bandeira2009,
author = {Bandeira, Luís, Pedregal, Pablo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {rank-one convexity; laminate},
language = {eng},
number = {5},
pages = {1621-1634},
publisher = {Elsevier},
title = {Finding new families of rank-one convex polynomials},
url = {http://eudml.org/doc/78906},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Bandeira, Luís
AU - Pedregal, Pablo
TI - Finding new families of rank-one convex polynomials
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1621
EP - 1634
LA - eng
KW - rank-one convexity; laminate
UR - http://eudml.org/doc/78906
ER -

References

top
  1. [1] Alibert J.J., Dacorogna B., An example of a quasiconvex function not polyconvex in dimension 2, Arch. Rational Mech. Anal.117 (1992) 155-166. Zbl0761.26009MR1145109
  2. [2] Ball J.M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal.63 (1977) 337-403. Zbl0368.73040MR475169
  3. [3] Dacorogna B., Direct Methods in the Calculus of Variations, Springer, 1989. Zbl0703.49001MR990890
  4. [4] Dacorogna B., Douchet J., Gangbo W., Rappaz J., Some examples of rank one convex functions in dimension two, Proc. Roy. Soc. Edinburgh Sect. A114 (1–2) (1990) 135-150. Zbl0722.49018MR1051612
  5. [5] Dacorogna B., Marcellini P., A counterexample in the vectorial calculus of variations, in: Material Instabilities in Continuum Mechanics, Oxford Sci. Publ., Oxford Univ. Press, New York, 1988, pp. 77-83. Zbl0641.49007MR970519
  6. [6] Gutiérrez S., A necessary condition for the quasiconvexity of polynomials of degree four, J. Convex Anal.13 (1) (2006) 51-60. Zbl1115.49016MR2211803
  7. [7] Morrey C.B., Quasiconvexity and the lower semicontinuity of multiple integrals, Pacific J. Math.2 (1952) 25-53. Zbl0046.10803MR54865
  8. [8] Pedregal P., Laminates and microstructure, Eur. J. Appl. Math.4 (2) (1993) 121-149. Zbl0779.73050MR1228114
  9. [9] Schost E., Computing parametric geometric resolutions, Appl. Algebra Engrg. Comm. Comput.13 (5) (2003) 349-393. Zbl1058.68123MR1959170
  10. [10] Wang D., Elimination Methods, Texts and Monographs in Symbolic Computation, Springer, 2001. Zbl0964.13014MR1826878
  11. [11] Weispfenning V., Comprehensive Gröbner bases, J. Symbolic Comput.14 (1992) 1-29. Zbl0784.13013MR1177987

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.