The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Finding new families of rank-one convex polynomials”

A remark on polyconvex envelopes of radially symmetric functions in dimension 2 × 2

Ondřej Došlý (1997)

Applications of Mathematics

Similarity:

We study polyconvex envelopes of a class of functions related to the function of Kohn and Strang introduced in . We present an example of a function of this class for which the polyconvex envelope may be computed explicitly and we also point out some general features of the problem.

Two-dimensional real symmetric spaces with maximal projection constant

Bruce Chalmers, Grzegorz Lewicki (2000)

Annales Polonici Mathematici

Similarity:

Let V be a two-dimensional real symmetric space with unit ball having 8n extreme points. Let λ(V) denote the absolute projection constant of V. We show that λ ( V ) λ ( V n ) where V n is the space whose ball is a regular 8n-polygon. Also we reprove a result of [1] and [5] which states that 4 / π = λ ( l ( 2 ) ) λ ( V ) for any two-dimensional real symmetric space V.

Integrable systems in the plane with center type linear part

Javier Chavarriga (1994)

Applicationes Mathematicae

Similarity:

We study integrability of two-dimensional autonomous systems in the plane with center type linear part. For quadratic and homogeneous cubic systems we give a simple characterization for integrable cases, and we find explicitly all first integrals for these cases. Finally, two large integrable system classes are determined in the most general nonhomogeneous cases.