Boundary blow-up solutions of cooperative systems

Juan Dávila; Louis Dupaigne; Olivier Goubet; Salomé Martínez

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 5, page 1767-1791
  • ISSN: 0294-1449

How to cite

top

Dávila, Juan, et al. "Boundary blow-up solutions of cooperative systems." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1767-1791. <http://eudml.org/doc/78912>.

@article{Dávila2009,
author = {Dávila, Juan, Dupaigne, Louis, Goubet, Olivier, Martínez, Salomé},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {cooperative system; boundary blow-up; Keller-Osserman condition},
language = {eng},
number = {5},
pages = {1767-1791},
publisher = {Elsevier},
title = {Boundary blow-up solutions of cooperative systems},
url = {http://eudml.org/doc/78912},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Dávila, Juan
AU - Dupaigne, Louis
AU - Goubet, Olivier
AU - Martínez, Salomé
TI - Boundary blow-up solutions of cooperative systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1767
EP - 1791
LA - eng
KW - cooperative system; boundary blow-up; Keller-Osserman condition
UR - http://eudml.org/doc/78912
ER -

References

top
  1. [1] Bandle C., Asymptotic behavior of large solutions of elliptic equations, An. Univ. Craiova Ser. Mat. Inform.32 (2005) 1-8. Zbl1120.35014MR2215890
  2. [2] Bandle C., Marcus M., Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire12 (1995) 155-171. Zbl0840.35033MR1326666
  3. [3] Bandle C., Marcus M., Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour, J. Anal. Math.58 (1992) 9-24. Zbl0802.35038MR1226934
  4. [4] Chuaqui M., Cortazar C., Elgueta M., Garcia-Melian J., Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights, Comm. Pure Appl. Anal.3 (4) (2004) 653-662. Zbl1174.35386MR2106305
  5. [5] Dancer E.N., Du Y., Effects of certain degeneracies in the predator–prey model, SIAM J. Math. Anal.34 (2) (2002) 292-314. Zbl1055.35046MR1951776
  6. [6] Díaz J.I., Lazzo M., Schmidt P.G., Large solutions for a system of elliptic equations arising from fluid dynamics, SIAM J. Math. Anal.37 (2) (2005) 490-513. Zbl1136.35360MR2176113
  7. [7] Du Y., Effects of a degeneracy in the competition model. I. Classical and generalized steady-state solutions, J. Differential Equations181 (1) (2002) 92-132. Zbl1042.35016MR1900462
  8. [8] Du Y., Effects of a degeneracy in the competition model. II. Perturbation and dynamical behaviour, J. Differential Equations181 (1) (2002) 133-164. Zbl1042.35017MR1900463
  9. [9] Dumont S., Dupaigne L., Goubet O., Radulescu V., Back to the Keller–Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud.7 (2007) 271-298. Zbl1137.35030MR2308040
  10. [10] García-Melián J., Sabina de Lis J., Letelier-Albornoz R., The solvability of an elliptic system under a singular boundary condition, Proc. Roy. Soc. Edinburgh Sect. A136 (2006) 509-546. Zbl1237.35048MR2227806
  11. [11] García-Melián J., Rossi J.D., Boundary blow-up solutions to elliptic systems of competitive type, J. Differential Equations206 (2004) 156-181. Zbl1162.35359MR2093922
  12. [12] García-Melián J., Suárez A., Existence and uniqueness of positive large solutions to some cooperative systems, Adv. Nonlinear Stud.3 (2003) 193-206. Zbl1045.35025MR1971311
  13. [13] Gilbarg D., Trudinger N.-S., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, second ed., Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
  14. [14] Kato T., Schrödinger operators with singular potentials, Israel J. Math.13 (1972) 135-148. Zbl0246.35025MR333833
  15. [15] Keller J., On solutions to Δ u = f u , Comm. Pure Appl. Math.10 (1957) 503-510. Zbl0090.31801MR91407
  16. [16] López-Gómez J., Coexistence and meta-coexistence for competing species, Houston J. Math.29 (2) (2003) 483-536. Zbl1034.35062MR1987588
  17. [17] Osserman R., On the inequality Δ u f u , Pacific J. Math.7 (1957) 1641-1647. Zbl0083.09402MR98239
  18. [18] Pao C.V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. Zbl0777.35001MR1212084
  19. [19] Protter M., Weinberger H., Maximum Principles in Differential Equations, corrected reprint of the 1967 original, Springer-Verlag, New York, 1984. Zbl0549.35002MR762825

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.