Boundary blow-up solutions of cooperative systems
Juan Dávila; Louis Dupaigne; Olivier Goubet; Salomé Martínez
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 5, page 1767-1791
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDávila, Juan, et al. "Boundary blow-up solutions of cooperative systems." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1767-1791. <http://eudml.org/doc/78912>.
@article{Dávila2009,
author = {Dávila, Juan, Dupaigne, Louis, Goubet, Olivier, Martínez, Salomé},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {cooperative system; boundary blow-up; Keller-Osserman condition},
language = {eng},
number = {5},
pages = {1767-1791},
publisher = {Elsevier},
title = {Boundary blow-up solutions of cooperative systems},
url = {http://eudml.org/doc/78912},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Dávila, Juan
AU - Dupaigne, Louis
AU - Goubet, Olivier
AU - Martínez, Salomé
TI - Boundary blow-up solutions of cooperative systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1767
EP - 1791
LA - eng
KW - cooperative system; boundary blow-up; Keller-Osserman condition
UR - http://eudml.org/doc/78912
ER -
References
top- [1] Bandle C., Asymptotic behavior of large solutions of elliptic equations, An. Univ. Craiova Ser. Mat. Inform.32 (2005) 1-8. Zbl1120.35014MR2215890
- [2] Bandle C., Marcus M., Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire12 (1995) 155-171. Zbl0840.35033MR1326666
- [3] Bandle C., Marcus M., Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour, J. Anal. Math.58 (1992) 9-24. Zbl0802.35038MR1226934
- [4] Chuaqui M., Cortazar C., Elgueta M., Garcia-Melian J., Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights, Comm. Pure Appl. Anal.3 (4) (2004) 653-662. Zbl1174.35386MR2106305
- [5] Dancer E.N., Du Y., Effects of certain degeneracies in the predator–prey model, SIAM J. Math. Anal.34 (2) (2002) 292-314. Zbl1055.35046MR1951776
- [6] Díaz J.I., Lazzo M., Schmidt P.G., Large solutions for a system of elliptic equations arising from fluid dynamics, SIAM J. Math. Anal.37 (2) (2005) 490-513. Zbl1136.35360MR2176113
- [7] Du Y., Effects of a degeneracy in the competition model. I. Classical and generalized steady-state solutions, J. Differential Equations181 (1) (2002) 92-132. Zbl1042.35016MR1900462
- [8] Du Y., Effects of a degeneracy in the competition model. II. Perturbation and dynamical behaviour, J. Differential Equations181 (1) (2002) 133-164. Zbl1042.35017MR1900463
- [9] Dumont S., Dupaigne L., Goubet O., Radulescu V., Back to the Keller–Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud.7 (2007) 271-298. Zbl1137.35030MR2308040
- [10] García-Melián J., Sabina de Lis J., Letelier-Albornoz R., The solvability of an elliptic system under a singular boundary condition, Proc. Roy. Soc. Edinburgh Sect. A136 (2006) 509-546. Zbl1237.35048MR2227806
- [11] García-Melián J., Rossi J.D., Boundary blow-up solutions to elliptic systems of competitive type, J. Differential Equations206 (2004) 156-181. Zbl1162.35359MR2093922
- [12] García-Melián J., Suárez A., Existence and uniqueness of positive large solutions to some cooperative systems, Adv. Nonlinear Stud.3 (2003) 193-206. Zbl1045.35025MR1971311
- [13] Gilbarg D., Trudinger N.-S., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, second ed., Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [14] Kato T., Schrödinger operators with singular potentials, Israel J. Math.13 (1972) 135-148. Zbl0246.35025MR333833
- [15] Keller J., On solutions to , Comm. Pure Appl. Math.10 (1957) 503-510. Zbl0090.31801MR91407
- [16] López-Gómez J., Coexistence and meta-coexistence for competing species, Houston J. Math.29 (2) (2003) 483-536. Zbl1034.35062MR1987588
- [17] Osserman R., On the inequality , Pacific J. Math.7 (1957) 1641-1647. Zbl0083.09402MR98239
- [18] Pao C.V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. Zbl0777.35001MR1212084
- [19] Protter M., Weinberger H., Maximum Principles in Differential Equations, corrected reprint of the 1967 original, Springer-Verlag, New York, 1984. Zbl0549.35002MR762825
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.