Page 1 Next

Displaying 1 – 20 of 30

Showing per page

A predator-prey model with combined death and competition terms

Joon Hyuk Kang, Jungho Lee (2010)

Czechoslovak Mathematical Journal

The existence of a positive solution for the generalized predator-prey model for two species Δ u + u ( a + g ( u , v ) ) = 0 in Ω , Δ v + v ( d + h ( u , v ) ) = 0 in Ω , u = v = 0 on Ω , are investigated. The techniques used in the paper are the elliptic theory, upper-lower solutions, maximum principles and spectrum estimates. The arguments also rely on some detailed properties of the solution of logistic equations.

A variational approach to bifurcation in reaction-diffusion systems with Signorini type boundary conditions

Jamol I. Baltaev, Milan Kučera, Martin Väth (2012)

Applications of Mathematics

We consider a simple reaction-diffusion system exhibiting Turing's diffusion driven instability if supplemented with classical homogeneous mixed boundary conditions. We consider the case when the Neumann boundary condition is replaced by a unilateral condition of Signorini type on a part of the boundary and show the existence and location of bifurcation of stationary spatially non-homogeneous solutions. The nonsymmetric problem is reformulated as a single variational inequality with a potential...

A variational approach to bifurcation points of a reaction-diffusion system with obstacles and Neumann boundary conditions

Jan Eisner, Milan Kučera, Martin Väth (2016)

Applications of Mathematics

Given a reaction-diffusion system which exhibits Turing's diffusion-driven instability, the influence of unilateral obstacles of opposite sign (source and sink) on bifurcation and critical points is studied. In particular, in some cases it is shown that spatially nonhomogeneous stationary solutions (spatial patterns) bifurcate from a basic spatially homogeneous steady state for an arbitrarily small ratio of diffusions of inhibitor and activator, while a sufficiently large ratio is necessary in the...

Boundary blow-up solutions for a cooperative system involving the p-Laplacian

Li Chen, Yujuan Chen, Dang Luo (2013)

Annales Polonici Mathematici

We study necessary and sufficient conditions for the existence of nonnegative boundary blow-up solutions to the cooperative system Δ p u = g ( u - α v ) , Δ p v = f ( v - β u ) in a smooth bounded domain of N , where Δ p is the p-Laplacian operator defined by Δ p u = d i v ( | u | p - 2 u ) with p > 1, f and g are nondecreasing, nonnegative C¹ functions, and α and β are two positive parameters. The asymptotic behavior of solutions near the boundary is obtained and we get a uniqueness result for p = 2.

Convergence of minimax structures and continuation of critical points for singularly perturbed systems

Benedetta Noris, Hugo Tavares, Susanna Terracini, Gianmaria Verzini (2012)

Journal of the European Mathematical Society

In the recent literature, the phenomenon of phase separation for binary mixtures of Bose–Einstein condensates can be understood, from a mathematical point of view, as governed by the asymptotic limit of the stationary Gross–Pitaevskii system - Δ u + u 3 + β u v 2 = λ u , - Δ v + v 3 + β u 2 v = μ v , u , v H 0 1 ( Ω ) , u , v > 0 , as the interspecies scattering length β goes to + . For this system we consider the associated energy functionals J β , β ( 0 , + ) , with L 2 -mass constraints, which limit J (as β + ) is strongly irregular. For such functionals, we construct multiple critical points via a common...

Converse problem for the two-component radial Gross-Pitaevskii system with a large coupling parameter

Casteras, Jean-Baptiste, Sourdis, Christos (2017)

Proceedings of Equadiff 14

We consider strongly coupled competitive elliptic systems that arise in the study of two-component Bose-Einstein condensates. As the coupling parameter tends to infinity, solutions that remain uniformly bounded are known to converge to a segregated limiting profile, with the difference of its components satisfying a limit scalar PDE. In the case of radial symmetry, under natural non-degeneracy assumptions on a solution of the limit problem, we establish by a perturbation argument its persistence...

Existence and asymptotic behavior of positive solutions for elliptic systems with nonstandard growth conditions

Honghui Yin, Zuodong Yang (2012)

Annales Polonici Mathematici

Our main purpose is to establish the existence of a positive solution of the system ⎧ - p ( x ) u = F ( x , u , v ) , x ∈ Ω, ⎨ - q ( x ) v = H ( x , u , v ) , x ∈ Ω, ⎩u = v = 0, x ∈ ∂Ω, where Ω N is a bounded domain with C² boundary, F ( x , u , v ) = λ p ( x ) [ g ( x ) a ( u ) + f ( v ) ] , H ( x , u , v ) = λ q ( x ) [ g ( x ) b ( v ) + h ( u ) ] , λ > 0 is a parameter, p(x),q(x) are functions which satisfy some conditions, and - p ( x ) u = - d i v ( | u | p ( x ) - 2 u ) is called the p(x)-Laplacian. We give existence results and consider the asymptotic behavior of solutions near the boundary. We do not assume any symmetry conditions on the system.

Currently displaying 1 – 20 of 30

Page 1 Next