Liouville type results for periodic and almost periodic linear operators
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 6, page 2481-2502
- ISSN: 0294-1449
Access Full Article
topHow to cite
topRossi, Luca. "Liouville type results for periodic and almost periodic linear operators." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2481-2502. <http://eudml.org/doc/78943>.
@article{Rossi2009,
author = {Rossi, Luca},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {linear parabolic operator; Liouville theorem; periodic solutions; almost periodic solutions; maximum principle; periodic principal eigenvalue; Dirichlet or Robin boundary conditions},
language = {eng},
number = {6},
pages = {2481-2502},
publisher = {Elsevier},
title = {Liouville type results for periodic and almost periodic linear operators},
url = {http://eudml.org/doc/78943},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Rossi, Luca
TI - Liouville type results for periodic and almost periodic linear operators
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2481
EP - 2502
LA - eng
KW - linear parabolic operator; Liouville theorem; periodic solutions; almost periodic solutions; maximum principle; periodic principal eigenvalue; Dirichlet or Robin boundary conditions
UR - http://eudml.org/doc/78943
ER -
References
top- [1] Agmon S., On positive solutions of elliptic equations with periodic coefficients in , spectral results and extensions to elliptic operators on Riemannian manifolds, in: Differential Equations, Birmingham, Alabama, 1983, North-Holland Math. Stud., vol. 92, North-Holland, Amsterdam, 1984, pp. 7-17. Zbl0564.35033MR799327
- [2] Amerio L., Prouse G., Almost-Periodic Functions and Functional Equations, Van Nostrand Reinhold, New York, 1971. Zbl0215.15701MR275061
- [3] Avellaneda M., Lin F.-H., Un théorème de Liouville pour des équations elliptiques à coefficients périodiques, C. R. Acad. Sci. Paris Sér. I Math.309 (5) (1989) 245-250. Zbl0691.35022MR1010728
- [4] Berestycki H., Capuzzo-Dolcetta I., Nirenberg L., Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal.4 (1) (1994) 59-78. Zbl0816.35030MR1321809
- [5] Bidaut-Véron M.-F., Initial blow-up for the solutions of a semilinear parabolic equation with source term, in: Équations aux dérivées partielles et applications, Gauthier–Villars/Éd. Sci. Méd. Elsevier, Paris, 1998, pp. 189-198. Zbl0914.35055MR1648222
- [6] Bochner S., Beiträge zur Theorie der fastperiodischen Funktionen, Math. Ann.96 (1) (1927) 119-147. Zbl52.0261.01MR1512308JFM52.0261.01
- [7] Bohr H., Zur Theorie der Fastperiodischen Funktionen II. Zusammenhang der fastperiodischen Funktionen mit Funktionen von unendlich vielen Variabeln; gleichmässige Approximation durch trigonometrische Summen, Acta Math.46 (1–2) (1925) 101-214. Zbl51.0212.02MR1555201JFM51.0212.02
- [8] Brezis H., Chipot M., Xie Y., Some remarks on Liouville type theorems, in: Recent Advances in Nonlinear Analysis, World Sci. Publ., Hackensack, NJ, 2008, pp. 43-65. Zbl05375300MR2410737
- [9] Caffarelli L.A., Cabré X., Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ., vol. 43, American Mathematical Society, Providence, RI, 1995. Zbl0834.35002MR1351007
- [10] Capuzzo Dolcetta I., Cutrì A., Hadamard and Liouville type results for fully nonlinear partial differential inequalities, Commun. Contemp. Math.5 (2003) 435-448. Zbl1040.35024MR1992357
- [11] Cutrì A., Leoni F., On the Liouville property for fully nonlinear equations, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (2) (2000) 219-245. Zbl0956.35035MR1753094
- [12] Dancer E.N., Du Y., Some remarks on Liouville type results for quasilinear elliptic equations, Proc. Amer. Math. Soc.131 (6) (2003) 1891-1899, (electronic). Zbl1076.35038MR1955278
- [13] De Giorgi E., Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (3)3 (1975) 25-43. Zbl0084.31901
- [14] Fink A.M., Almost Periodic Differential Equations, Lecture Notes in Math., vol. 377, Springer-Verlag, Berlin, 1974. Zbl0325.34039MR460799
- [15] Gidas B., Spruck J., A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations6 (8) (1981) 883-901. Zbl0462.35041MR619749
- [16] Gilbarg D., Serrin J., On isolated singularities of solutions of second order elliptic differential equations, J. Anal. Math.4 (1955/1956) 309-340. Zbl0071.09701MR81416
- [17] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., vol. 224, second ed., Springer-Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [18] Hile G.N., Mawata C.P., Liouville theorems for nonlinear parabolic equations of second order, Differential Integral Equations9 (1) (1996) 149-172. Zbl0840.35043MR1364039
- [19] Hu Z., Mingarelli A.B., On a question in the theory of almost periodic differential equations, Proc. Amer. Math. Soc.127 (9) (1999) 2665-2670. Zbl0924.34039MR1485481
- [20] Hu Z., Mingarelli A.B., Almost periodicity of solutions for almost periodic evolution equations, Differential Integral Equations18 (4) (2005) 469-480. Zbl1212.34172MR2122710
- [21] Kuchment P., Pinchover Y., Integral representations and Liouville theorems for solutions of periodic elliptic equations, J. Funct. Anal.181 (2) (2001) 402-446. Zbl0986.35028MR1821702
- [22] Ladyženskaja O.A., Solonnikov V.A., Ural'ceva N.N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23, American Mathematical Society, Providence, RI, 1967, translated from the Russian by S. Smith. Zbl0174.15403MR241822
- [23] Li P., Wang J., Polynomial growth solutions of uniformly elliptic operators of non-divergence form, Proc. Amer. Math. Soc.129 (12) (2001) 3691-3699, (electronic). Zbl0989.35042MR1860504
- [24] Li Y., Zhang L., Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, J. Anal. Math.90 (2003) 27-87. Zbl1173.35477MR2001065
- [25] Lieberman G.M., Second Order Parabolic Differential Equations, World Scientific Publishing, River Edge, NJ, 1996. Zbl0884.35001MR1465184
- [26] Mingarelli A.B., Pu F.Q., Zheng L., A counterexample in the theory of almost periodic differential equations, Rocky Mountain J. Math.25 (1) (1995) 437-440. Zbl0833.34041MR1340018
- [27] Moser J., Struwe M., On a Liouville-type theorem for linear and nonlinear elliptic differential equations on a torus, Bull. Braz. Math. Soc. (N.S.)23 (1–2) (1992) 1-20. Zbl0787.35028MR1203171
- [28] Phóng V.Q., Stability and almost periodicity of trajectories of periodic processes, J. Differential Equations115 (2) (1995) 402-415. Zbl0815.34050MR1310938
- [29] Pinsky R.G., Positive Harmonic Functions and Diffusion, Cambridge Stud. Adv. Math., vol. 45, Cambridge University Press, Cambridge, 1995. Zbl0858.31001MR1326606
- [30] Pinsky R.G., Second order elliptic operators with periodic coefficients: Criticality theory, perturbations, and positive harmonic functions, J. Funct. Anal.129 (1) (1995) 80-107. Zbl0826.35030MR1322643
- [31] Protter Murray H., Weinberger Hans F., Maximum Principles in Differential Equations, Prentice–Hall, Englewood Cliffs, NJ, 1967. Zbl0153.13602MR219861
- [32] Rossi L., Non-existence of positive solutions of fully nonlinear elliptic equations in unbounded domains, Commun. Pure Appl. Anal.7 (1) (2008) 125-141. Zbl1187.35076MR2358359
- [33] Troianiello G.M., Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York, 1987. Zbl0655.35002MR1094820
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.