A refined Brunn-Minkowski inequality for convex sets
A. Figalli; F. Maggi; A. Pratelli
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 6, page 2511-2519
- ISSN: 0294-1449
Access Full Article
topHow to cite
topFigalli, A., Maggi, F., and Pratelli, A.. "A refined Brunn-Minkowski inequality for convex sets." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2511-2519. <http://eudml.org/doc/78945>.
@article{Figalli2009,
author = {Figalli, A., Maggi, F., Pratelli, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Brunn-Minkowski inequality; sharp estimates; stability results; relative asymmetry; relative size},
language = {eng},
number = {6},
pages = {2511-2519},
publisher = {Elsevier},
title = {A refined Brunn-Minkowski inequality for convex sets},
url = {http://eudml.org/doc/78945},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Figalli, A.
AU - Maggi, F.
AU - Pratelli, A.
TI - A refined Brunn-Minkowski inequality for convex sets
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2511
EP - 2519
LA - eng
KW - Brunn-Minkowski inequality; sharp estimates; stability results; relative asymmetry; relative size
UR - http://eudml.org/doc/78945
ER -
References
top- [1] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 2000. Zbl0957.49001MR1857292
- [2] Brenier Y., Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math.305 (19) (1987) 805-808. Zbl0652.26017MR923203
- [3] Brenier Y., Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math.44 (4) (1991) 375-417. Zbl0738.46011MR1100809
- [4] Burago Y.D., Zalgaller V.A., Geometric Inequalities, Springer, New York, 1988, Russian original: 1980. Zbl0633.53002MR936419
- [5] Caffarelli L.A., The regularity of mappings with a convex potential, J. Amer. Math. Soc.5 (1) (1992) 99-104. Zbl0753.35031MR1124980
- [6] Caffarelli L.A., Boundary regularity of maps with convex potentials. II, Ann. of Math. (2)144 (3) (1996) 453-496. Zbl0916.35016MR1426885
- [7] Diskant V.I., Stability of the solution of a Minkowski equation, Sibirsk. Mat. Zh.14 (1973) 669-673, 696 (in Russian). Zbl0264.52007MR333988
- [8] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992, viii+268 pp. Zbl0804.28001MR1158660
- [9] Federer H., Geometric Measure Theory, Grundlehren Math. Wiss., vol. 153, Springer-Verlag New York Inc., New York, 1969, xiv+676 pp. Zbl0176.00801MR257325
- [10] A. Figalli, F. Maggi, A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, submitted for publication. Zbl1196.49033
- [11] Gardner R.J., The Brunn–Minkowski inequality, Bull. Amer. Math. Soc. (N.S.)39 (3) (2002) 355-405. Zbl1019.26008MR1898210
- [12] Groemer H., On the Brunn–Minkowski theorem, Geom. Dedicata27 (3) (1988) 357-371. Zbl0652.52009MR960207
- [13] Hadwiger H., Ohmann D., Brunn–Minkowskischer Satz und Isoperimetrie, Math. Z.66 (1956) 1-8. Zbl0071.38001MR82697
- [14] Henstock R., Macbeath A.M., On the measure of sum sets, I. The theorems of Brunn, Minkowski and Lusternik, Proc. London Math. Soc.3 (1953) 182-194. Zbl0052.18302MR56669
- [15] John F., An inequality for convex bodies, Univ. Kentucky Res. Club Bull.8 (1942) 8-11. Zbl0061.38301MR8157
- [16] McCann R.J., A convexity principle for interacting gases, Adv. Math.128 (1) (1997) 153-179. Zbl0901.49012MR1451422
- [17] Ruzsa I.Z., The Brunn–Minkowski inequality and nonconvex sets, Geom. Dedicata67 (3) (1997) 337-348. Zbl0888.52011MR1475877
- [18] Schneider R., On the general Brunn–Minkowski theorem, Beitrage Algebra Geom.34 (1) (1993) 1-8. Zbl0788.52008MR1239273
- [19] Villani C., Topics in Optimal Transportation, Grad. Stud. Math., vol. 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp. Zbl1106.90001MR1964483
Citations in EuDML Documents
top- Eleonora Cinti, Il problema isoperimetrico:una storia lunga 2000 anni
- Dorin Bucur, Ilaria Fragalà, Jimmy Lamboley, Optimal convex shapes for concave functionals
- Dorin Bucur, Ilaria Fragalà, Jimmy Lamboley, Optimal convex shapes for concave functionals
- Dorin Bucur, Ilaria Fragalà, Jimmy Lamboley, Optimal convex shapes for concave functionals
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.