A refined Brunn-Minkowski inequality for convex sets

A. Figalli; F. Maggi; A. Pratelli

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2511-2519
  • ISSN: 0294-1449

How to cite

top

Figalli, A., Maggi, F., and Pratelli, A.. "A refined Brunn-Minkowski inequality for convex sets." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2511-2519. <http://eudml.org/doc/78945>.

@article{Figalli2009,
author = {Figalli, A., Maggi, F., Pratelli, A.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Brunn-Minkowski inequality; sharp estimates; stability results; relative asymmetry; relative size},
language = {eng},
number = {6},
pages = {2511-2519},
publisher = {Elsevier},
title = {A refined Brunn-Minkowski inequality for convex sets},
url = {http://eudml.org/doc/78945},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Figalli, A.
AU - Maggi, F.
AU - Pratelli, A.
TI - A refined Brunn-Minkowski inequality for convex sets
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2511
EP - 2519
LA - eng
KW - Brunn-Minkowski inequality; sharp estimates; stability results; relative asymmetry; relative size
UR - http://eudml.org/doc/78945
ER -

References

top
  1. [1] Ambrosio L., Fusco N., Pallara D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 2000. Zbl0957.49001MR1857292
  2. [2] Brenier Y., Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math.305 (19) (1987) 805-808. Zbl0652.26017MR923203
  3. [3] Brenier Y., Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math.44 (4) (1991) 375-417. Zbl0738.46011MR1100809
  4. [4] Burago Y.D., Zalgaller V.A., Geometric Inequalities, Springer, New York, 1988, Russian original: 1980. Zbl0633.53002MR936419
  5. [5] Caffarelli L.A., The regularity of mappings with a convex potential, J. Amer. Math. Soc.5 (1) (1992) 99-104. Zbl0753.35031MR1124980
  6. [6] Caffarelli L.A., Boundary regularity of maps with convex potentials. II, Ann. of Math. (2)144 (3) (1996) 453-496. Zbl0916.35016MR1426885
  7. [7] Diskant V.I., Stability of the solution of a Minkowski equation, Sibirsk. Mat. Zh.14 (1973) 669-673, 696 (in Russian). Zbl0264.52007MR333988
  8. [8] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992, viii+268 pp. Zbl0804.28001MR1158660
  9. [9] Federer H., Geometric Measure Theory, Grundlehren Math. Wiss., vol. 153, Springer-Verlag New York Inc., New York, 1969, xiv+676 pp. Zbl0176.00801MR257325
  10. [10] A. Figalli, F. Maggi, A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, submitted for publication. Zbl1196.49033
  11. [11] Gardner R.J., The Brunn–Minkowski inequality, Bull. Amer. Math. Soc. (N.S.)39 (3) (2002) 355-405. Zbl1019.26008MR1898210
  12. [12] Groemer H., On the Brunn–Minkowski theorem, Geom. Dedicata27 (3) (1988) 357-371. Zbl0652.52009MR960207
  13. [13] Hadwiger H., Ohmann D., Brunn–Minkowskischer Satz und Isoperimetrie, Math. Z.66 (1956) 1-8. Zbl0071.38001MR82697
  14. [14] Henstock R., Macbeath A.M., On the measure of sum sets, I. The theorems of Brunn, Minkowski and Lusternik, Proc. London Math. Soc.3 (1953) 182-194. Zbl0052.18302MR56669
  15. [15] John F., An inequality for convex bodies, Univ. Kentucky Res. Club Bull.8 (1942) 8-11. Zbl0061.38301MR8157
  16. [16] McCann R.J., A convexity principle for interacting gases, Adv. Math.128 (1) (1997) 153-179. Zbl0901.49012MR1451422
  17. [17] Ruzsa I.Z., The Brunn–Minkowski inequality and nonconvex sets, Geom. Dedicata67 (3) (1997) 337-348. Zbl0888.52011MR1475877
  18. [18] Schneider R., On the general Brunn–Minkowski theorem, Beitrage Algebra Geom.34 (1) (1993) 1-8. Zbl0788.52008MR1239273
  19. [19] Villani C., Topics in Optimal Transportation, Grad. Stud. Math., vol. 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp. Zbl1106.90001MR1964483

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.