Constructing a relativistic heat flow by transport time steps

Robert J. McCann; Marjolaine Puel

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 6, page 2539-2580
  • ISSN: 0294-1449

How to cite

top

McCann, Robert J., and Puel, Marjolaine. "Constructing a relativistic heat flow by transport time steps." Annales de l'I.H.P. Analyse non linéaire 26.6 (2009): 2539-2580. <http://eudml.org/doc/78947>.

@article{McCann2009,
author = {McCann, Robert J., Puel, Marjolaine},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {relativistic heat equation; optimal transportation; gradient flow; Jordan-Kinderlehrer-Otto scheme},
language = {eng},
number = {6},
pages = {2539-2580},
publisher = {Elsevier},
title = {Constructing a relativistic heat flow by transport time steps},
url = {http://eudml.org/doc/78947},
volume = {26},
year = {2009},
}

TY - JOUR
AU - McCann, Robert J.
AU - Puel, Marjolaine
TI - Constructing a relativistic heat flow by transport time steps
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 6
SP - 2539
EP - 2580
LA - eng
KW - relativistic heat equation; optimal transportation; gradient flow; Jordan-Kinderlehrer-Otto scheme
UR - http://eudml.org/doc/78947
ER -

References

top
  1. [1] Agueh Martial, Existence of solutions to degenerate parabolic equations via the Monge–Kantorovich theory, Adv. Differential Equations10 (3) (2005) 309-360. Zbl1103.35051MR2123134
  2. [2] Luigi Ambrosio, Steepest descent flows and applications to spaces of probability measures, Lectures Notes, Santander, July 2004. Zbl1115.35012
  3. [3] Ambrosio Luigi, Gigli Nicola, Savaré Giuseppe, Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, Lectures Math. ETH Zurich, Birkhäuser Verlag, Basel, 2005. Zbl1090.35002MR2129498
  4. [4] Luigi Ambrosio, Aldo Pratelli, Existence and Stability Results in the L 1 Theory of Optimal Transportation, Lecture Notes in Math. Zbl1065.49026
  5. [5] Ambrosio Luigi, Tilli Paolo, Topics on Analysis in Metric Spaces, Oxford Lecture Ser. Math. Appl., vol. 25, Oxford University Press, Oxford, 2004. Zbl1080.28001MR2039660
  6. [6] Anzellotti Gianni, Pairing between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4)135 (1983) 293-318. Zbl0572.46023MR750538
  7. [7] Andreu Fuensanta, Caselles Vicent, Mazón José M., Existence and uniqueness of solution for a parabolic quasilinear problem for linear growth functionals with L 1 data, Math. Ann.322 (2002) 139-206. Zbl1056.35085MR1924690
  8. [8] Andreu Fuensanta, Caselles Vicent, Mazón José M., Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progr. Math., vol. 223, Birkhäuser Verlag, 2004. Zbl1053.35002MR2033382
  9. [9] Andreu Fuensanta, Caselles Vicent, Mazón José M., A strongly degenerate quasilinear equation: The elliptic case, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)3 (3) (2004) 555-587. Zbl1117.35022MR2099249
  10. [10] Andreu Fuensanta, Caselles Vicent, Mazón José M., A strong degenerate quasilinear equation: The parabolic case, Arch. Ration. Mech. Anal. (2005). Zbl1112.35111MR2185664
  11. [11] Andreu Fuensanta, Caselles Vicent, Mazón José M., A strongly degenerate quasilinear elliptic equation, Nonlinear Anal.61 (2005) 637-669. Zbl1190.35100
  12. [12] Andreu Fuensanta, Caselles Vicent, Mazón José M., The Cauchy problem for a strong degenerate quasilinear equation, J. Eur. Math. Soc. (JEMS)7 (2005) 361-393. Zbl1082.35089MR2156605
  13. [13] Fuensanta Andreu, Vicent Caselles, José M. Mazón, Salvador Moll, The speed of propagation of the support of solutions of a tempered diffusion equation, preprint. Zbl1142.35455
  14. [14] Brenier Yann, Extended Monge–Kantorovich theory, in: Optimal Transportation and Applications, Martina Franca, 2001, Lecture Notes in Math., vol. 1813, Springer, Berlin, 2003, pp. 91-121. Zbl1064.49036MR2006306
  15. [15] Brezis Haim, Analyse fonctionnelle et ses applications, Masson, 1983. Zbl0511.46001MR697382
  16. [16] Brezis Haim, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., vol. 5, North-Holland Publishing Co./American Elsevier Publishing Co., Inc., Amsterdam, London/New York, 1973, (in French). Zbl0252.47055MR348562
  17. [17] Caffarelli Luis A., Boundary regularity of maps with convex potentials. II, Ann. of Math. (2)144 (3) (1996) 453-496. Zbl0916.35016MR1426885
  18. [18] Carrillo Jose Antonio, Toscani Giuseppe, Wasserstein metric and large-time asymptotics of nonlinear diffusion equations, in: New Trends in Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2005, pp. 234-244, (in honor of the Salvatore Rionero 70th birthday). Zbl1089.76055MR2163983
  19. [19] Caselles Vicent, Convergence of the “relativistic” heat equation to the heat equation as c , Publ. Mat.51 (1) (2007) 121-142. Zbl1140.35466MR2307149
  20. [20] Chertock Alina, Kurganov Alexander, Rosenau Philip, Formation of discontinuities in flux-saturated degenerate parabolic equations, Nonlinearity16 (2003) 1875-1898. Zbl1049.35111MR2012846
  21. [21] Cordero-Erausquin Dario, Non-smooth differential properties of optimal transport, in: Recent Advances in the Theory and Applications of Mass Transport, Contemp. Math., vol. 353, Amer. Math. Soc., Providence, RI, 2004, pp. 61-71. Zbl1141.49040MR2079070
  22. [22] Dal Maso Gianni, Integral representation on BV ω ofΓ-limits of variational integrals, Manuscripta Math.30 (1980) 387-416. Zbl0435.49016MR567216
  23. [23] De Cicco Virginia, Fusco Nicola, Verde Anna, On L 1 -lower semicontinuity inBV, J. Convex Anal.12 (1) (2005) 173-185. Zbl1115.49011MR2135805
  24. [24] Dunford Nelson, Schwartz Jaco, Linear Operators, Interscience Publishers, New York, 1958. Zbl0084.10402MR117523
  25. [25] Evans Lawrence C., Weak Convergence Methods for Nonlinear Partial Differential Equations, published for the Conference Board of the Mathematical Sciences, Washington, DC, CBMS Reg. Conf. Ser. Math., vol. 74, Amer. Math. Soc., Providence, RI, 1990. Zbl0698.35004MR1034481
  26. [26] Evans Lawrence C., Gangbo Wilfrid, Differential equation methods for the Monge Kantorovich mass transfer, Mem. Amer. Math. Soc.653 (1999). Zbl0920.49004MR1464149
  27. [27] Evans Lawrence C., Gariepy Ronald F., Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, 1992. Zbl0804.28001MR1158660
  28. [28] Gangbo Wilfrid, McCann Robert J., Optimal maps in Monge's mass transport problem, C. R. Acad. Sci. Paris Sér. I Math.321 (12) (1995) 1653-1658. Zbl0858.49002MR1367824
  29. [29] Gangbo Wilfrid, McCann Robert J., The geometry of optimal transportation, Acta Math.177 (2) (1996) 113-161. Zbl0887.49017MR1440931
  30. [30] Jordan Richard, Kinderlehrer David, Otto Felix, The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal.29 (1) (1998) 1-17. Zbl0915.35120MR1617171
  31. [31] Robert Kohn, Roger Temam, Dual spaces of stresses and strains, with applications to Hencky plasticity, Appl. Math. Optim.10 (1) (1983) 1-35. Zbl0532.73039MR701898
  32. [32] Lions Jacques-Louis, Quelques methodes de résolution des problèmes aux limites non linéaires, Dunod, 1969. Zbl0189.40603MR259693
  33. [33] Loeper Grégoire, On the regularity of the polar factorization for time dependent maps, Calc. Var. Partial Differential Equations22 (3) (2005) 343-374. Zbl1116.35033MR2118903
  34. [34] Ma Xi-Nan, Trudinger Neil S., Wang Xu-Jia, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal.177 (2) (2005) 151-183. Zbl1072.49035MR2188047
  35. [35] McCann Robert J., A convexity principle for interacting gases, Adv. Math.128 (1997) 153-179. Zbl0901.49012MR1451422
  36. [36] McCann Robert J., Exact solutions to the transportation problem on the line, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.455 (1984) (1999) 1341-1380. Zbl0947.90010MR1701760
  37. [37] Mihalas D., Mihalas B., Foundations of Radiation Hydrodynamics, Oxford University Press, 1984. Zbl0651.76005MR781346
  38. [38] Felix Otto, Doubly degenerate diffusion equations as steepest descent, preprint, 1996. MR1415045
  39. [39] Rachev Svetlozar T., Rüschendorf Ludger, Mass Transportation Problems, vols. I. and II, Probab. Appl. (N. Y.), Springer-Verlag, New York, 1998. Zbl0990.60500MR1619170
  40. [40] Rosenau Philip, Tempered diffusion: A transport process with propagating fronts and initial delay, Phys. Rev. A46 (1992) 7371-7374. 
  41. [41] Simon Jacques, Compact sets in the space L p ( 0 , T ; B ) ,Ann. Mat. Pura Appl.146 (1987) 65-96. Zbl0629.46031MR916688
  42. [42] Temam Roger, Navier–Stokes Equation. Theory and Numerical Analysis, Stud. Math. Appl., vol. 2, third ed., North-Holland Publishing Co., Amsterdam, 1984. Zbl0568.35002MR769654
  43. [43] Villani Cedric, Topics in Optimal Transportation, Grad. Stud. Math., vol. 58, Amer. Math. Soc., 2003. Zbl1106.90001MR1964483

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.