A strongly degenerate quasilinear equation : the elliptic case

Fuensanta Andreu[1]; Vicent Caselles[2]; José Mazón[1]

  • [1] Universitat de Valencia Dept. de Análisis Matemático
  • [2] Universitat Pompeu-Fabra Dept. de Tecnologia

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 3, page 555-587
  • ISSN: 0391-173X

Abstract

top
We prove existence and uniqueness of entropy solutions for the Neumann problem for the quasilinear elliptic equation , where , , and is a convex function of with linear growth as , satisfying other additional assumptions. In particular, this class includes the case where , , being a convex function with linear growth as . In the second part of this work, using Crandall-Ligget’s iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the corresponding parabolic problem with initial data in .

How to cite

top

Andreu, Fuensanta, Caselles, Vicent, and Mazón, José. "A strongly degenerate quasilinear equation : the elliptic case." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.3 (2004): 555-587. <http://eudml.org/doc/84540>.

@article{Andreu2004,
abstract = {We prove existence and uniqueness of entropy solutions for the Neumann problem for the quasilinear elliptic equation $u - \mathrm \{div\} \, \mathbf \{a\}(u,Du) = v$, where $v\!\in \! L^1$, $\mathbf \{a\}(z,\xi ) = \nabla _\xi f(z,\xi )$, and $f$ is a convex function of $\xi $ with linear growth as $\Vert \xi \Vert \rightarrow \infty $, satisfying other additional assumptions. In particular, this class includes the case where $f(z,\xi ) = \varphi (z)\psi (\xi )$, $\varphi &gt; 0$, $\psi $ being a convex function with linear growth as $\Vert \xi \Vert \rightarrow \infty $. In the second part of this work, using Crandall-Ligget’s iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the corresponding parabolic problem with initial data in $L^1$.},
affiliation = {Universitat de Valencia Dept. de Análisis Matemático; Universitat Pompeu-Fabra Dept. de Tecnologia; Universitat de Valencia Dept. de Análisis Matemático},
author = {Andreu, Fuensanta, Caselles, Vicent, Mazón, José},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Neumann problem; entropy solution},
language = {eng},
number = {3},
pages = {555-587},
publisher = {Scuola Normale Superiore, Pisa},
title = {A strongly degenerate quasilinear equation : the elliptic case},
url = {http://eudml.org/doc/84540},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Andreu, Fuensanta
AU - Caselles, Vicent
AU - Mazón, José
TI - A strongly degenerate quasilinear equation : the elliptic case
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 3
SP - 555
EP - 587
AB - We prove existence and uniqueness of entropy solutions for the Neumann problem for the quasilinear elliptic equation $u - \mathrm {div} \, \mathbf {a}(u,Du) = v$, where $v\!\in \! L^1$, $\mathbf {a}(z,\xi ) = \nabla _\xi f(z,\xi )$, and $f$ is a convex function of $\xi $ with linear growth as $\Vert \xi \Vert \rightarrow \infty $, satisfying other additional assumptions. In particular, this class includes the case where $f(z,\xi ) = \varphi (z)\psi (\xi )$, $\varphi &gt; 0$, $\psi $ being a convex function with linear growth as $\Vert \xi \Vert \rightarrow \infty $. In the second part of this work, using Crandall-Ligget’s iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the corresponding parabolic problem with initial data in $L^1$.
LA - eng
KW - Neumann problem; entropy solution
UR - http://eudml.org/doc/84540
ER -

References

top
  1. [1] L. Ambrosio – N. Fusco – D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, The Clarendom Press, Oxford University Press, 2000. Zbl0957.49001MR1857292
  2. [2] F. Andreu – V. Caselles – J.M. Mazón, A parabolic quasilinear problem for linear growth functionals, Rev. Mat. Iberoamericana 18 (2002), 135-185. Zbl1010.35063MR1924690
  3. [3] F. Andreu – V. Caselles – J.M. Mazón, Existence and uniqueness of solution for a parabolic quasilinear problem for linear growth functionals with data, Math. Ann. 322 (2002), 139-206. Zbl1056.35085MR1883392
  4. [4] F. Andreu – V. Caselles – J.M. Mazón, The Cauchy Problem for Linear Growth Functionals with, J. Evol. Equ. 3 (2003), 39-65. Zbl1028.35054MR1977428
  5. [5] F. Andreu – V. Caselles – J.M. Mazón, “Parabolic Quasilinear Equations Minimizing Linear Growth Functionals”, Progress in Mathematics, vol. 223, Birkhäuser-Verlag, Basel, 2004. Zbl1053.35002MR2033382
  6. [6] F. Andreu – V. Caselles – J.M. Mazón, A Strongly Degenerate Quasilinear Equation: the Parabolic Case, preprint, 2003. 
  7. [7] G. Anzellotti, Pairings Between Measures and Bounded Functions and Compensated Compactness, Ann. Mat. Pura Appl. (4) 135 (1983), 293-318. Zbl0572.46023MR750538
  8. [8] G.I. Barenblatt – M. Bertsch – R. Dal Passo – V.M. Prostokishin – M. Ughi, A mathematical Model of Turbulent Heat and Mass Transfer in Stable Stratified Shear Flow, J. Fluid Mech. 253 (1993), 341-358. Zbl0777.76041MR1233902
  9. [9] Ph. Bénilan – L. Boccardo – T. Gallouet – R. Gariepy – M. Pierre – J.L Vazquez, An -Theory of Existence and Uniqueness of Solutions of Nonlinear Elliptic Equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 241-273. Zbl0866.35037MR1354907
  10. [10] Ph. Bénilan – M.G. Crandall, Completely Accretive Operators, In: “Semigroups Theory and Evolution Equations”, Ph. Clement et al. (eds.), Marcel Dekker, 1991, pp. 41-76. Zbl0895.47036MR1164641
  11. [11] Ph. Bénilan – M.G. Crandall – A. Pazy, “Evolution Equations Governed by Accretive Operators”, Book in preparation. 
  12. [12] M. Bertsch – R. Dal Passo, Hyperbolic Phenomena in a Strongly Degenerate Parabolic Equation, Arch. Ration. Mech. Anal. 117 (1992), 349-387. Zbl0785.35056MR1148213
  13. [13] M. Bertsch – R. Dal Passo, A Parabolic Equation with Mean-Curvature Type Operator, In: “Progres Nonlinear Differential Equation Appl.”, F. Browder (ed.), 7 Birkhäuser, 1992, 89-97. Zbl0795.35064MR1167831
  14. [14] Ph. Blanc, On the regularity of the solutions of some degenerate parabolic equations, Comm. Partial Differential Equations 18 (1993), 821-846. Zbl0818.35050MR1218520
  15. [15] Ph. Blanc, Sur une classe d’equations paraboliques degeneréesa une dimension d’espace possedant des solutions discontinues, Ph.D. Thesis, number 798, Ecole Polytechnique Federale de Lausanne, 1989. Zbl0719.35051
  16. [16] D. Blanchard – F. Murat, Renormalized solutions on nonlinear parabolic problems with data: existence and uniqueness, Proc. Royal Soc. Edinburgh Sect. A 127 (1997), 1137-1152. Zbl0895.35050MR1489429
  17. [17] J. Carrillo – P. Wittbold, Uniqueness of Renormalized Solutions of Degenerate Elliptic-Parabolic problems, J. Differential Equations 156 (1999), 93-121. Zbl0932.35129MR1701806
  18. [18] M. G. Crandall, Nonlinear Semigroups and Evolution Governed by Accretive Operators, In: “Proceeding of Symposium in Pure Mat.”, Part I, F. Browder (ed.) A.M.S., Providence 1986, 305-338. Zbl0637.47039MR843569
  19. [19] M. G. Crandall – T. M. Liggett, Generation of Semigroups of Nonlinear Transformations on General Banach Spaces, Amer. J. Math. 93 (1971), 265-298. Zbl0226.47038MR287357
  20. [20] G. Dal Maso, Integral representation on of -limits of variational integrals, Manuscripta Math. 30 (1980), 387-416. Zbl0435.49016MR567216
  21. [21] R. Dal Passo, Uniqueness of the entropy solution of a strongly degenerate parabolic equation, Comm. Partial Differential Equations 18 (1993), 265-279. Zbl0815.35056MR1211734
  22. [22] E. De Giorgi – L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., Rend. Lincei (9) Mat. Appl., (8) 82 (1988), 199-210. Zbl0715.49014MR1152641
  23. [23] J. J. Duderstadt – G. A. Moses, “Inertial Confinement Fusion”, John Wiley & Sons, 1982. 
  24. [24] L. C. Evans – R. F. Gariepy, “Measure Theory and Fine Properties of Functions”, Studies in Advanced Math., CRC Press, 1992. Zbl0804.28001MR1158660
  25. [25] M. A. Krasnosel’skii – Ya. B. Rutickii, “Convex Functions and Orliz Spaces”, P. Noordholff, Groningen, 1961. Zbl0095.09103
  26. [26] R. Kohn – R. Temam, Dual space of stress and strains with application to Hencky plasticity, Appl. Math. Optim. 10 (1983), 1-35. Zbl0532.73039MR701898
  27. [27] S. N. Kruzhkov, First order quasilinear equations in several independent variables, Math. USSR-Sb. 10 (1970), 217-243. Zbl0215.16203
  28. [28] J. Leray – J. L. Lions, Quelques resultats de Visik sur les problemes elliptiques semi-lineaires par les metode de Minty et Browder, Bull. Soc. Math. France 93 (1965), 97-107. Zbl0132.10502MR194733
  29. [29] P. Rosenau, Free Energy Functionals at the High Gradient Limit, Phys. Rev. A 41 (1990), 2227-2230. 
  30. [30] W.P. Ziemer, “Weakly Differentiable Functions”, GTM 120, Springer Verlag, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.