A strongly degenerate quasilinear equation : the elliptic case

Fuensanta Andreu[1]; Vicent Caselles[2]; José Mazón[1]

  • [1] Universitat de Valencia Dept. de Análisis Matemático
  • [2] Universitat Pompeu-Fabra Dept. de Tecnologia

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 3, page 555-587
  • ISSN: 0391-173X

Abstract

top
We prove existence and uniqueness of entropy solutions for the Neumann problem for the quasilinear elliptic equation u - div 𝐚 ( u , D u ) = v , where v L 1 , 𝐚 ( z , ξ ) = ξ f ( z , ξ ) , and f is a convex function of ξ with linear growth as ξ , satisfying other additional assumptions. In particular, this class includes the case where f ( z , ξ ) = ϕ ( z ) ψ ( ξ ) , ϕ > 0 , ψ being a convex function with linear growth as ξ . In the second part of this work, using Crandall-Ligget’s iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the corresponding parabolic problem with initial data in L 1 .

How to cite

top

Andreu, Fuensanta, Caselles, Vicent, and Mazón, José. "A strongly degenerate quasilinear equation : the elliptic case." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.3 (2004): 555-587. <http://eudml.org/doc/84540>.

@article{Andreu2004,
abstract = {We prove existence and uniqueness of entropy solutions for the Neumann problem for the quasilinear elliptic equation $u - \mathrm \{div\} \, \mathbf \{a\}(u,Du) = v$, where $v\!\in \! L^1$, $\mathbf \{a\}(z,\xi ) = \nabla _\xi f(z,\xi )$, and $f$ is a convex function of $\xi $ with linear growth as $\Vert \xi \Vert \rightarrow \infty $, satisfying other additional assumptions. In particular, this class includes the case where $f(z,\xi ) = \varphi (z)\psi (\xi )$, $\varphi &gt; 0$, $\psi $ being a convex function with linear growth as $\Vert \xi \Vert \rightarrow \infty $. In the second part of this work, using Crandall-Ligget’s iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the corresponding parabolic problem with initial data in $L^1$.},
affiliation = {Universitat de Valencia Dept. de Análisis Matemático; Universitat Pompeu-Fabra Dept. de Tecnologia; Universitat de Valencia Dept. de Análisis Matemático},
author = {Andreu, Fuensanta, Caselles, Vicent, Mazón, José},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Neumann problem; entropy solution},
language = {eng},
number = {3},
pages = {555-587},
publisher = {Scuola Normale Superiore, Pisa},
title = {A strongly degenerate quasilinear equation : the elliptic case},
url = {http://eudml.org/doc/84540},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Andreu, Fuensanta
AU - Caselles, Vicent
AU - Mazón, José
TI - A strongly degenerate quasilinear equation : the elliptic case
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 3
SP - 555
EP - 587
AB - We prove existence and uniqueness of entropy solutions for the Neumann problem for the quasilinear elliptic equation $u - \mathrm {div} \, \mathbf {a}(u,Du) = v$, where $v\!\in \! L^1$, $\mathbf {a}(z,\xi ) = \nabla _\xi f(z,\xi )$, and $f$ is a convex function of $\xi $ with linear growth as $\Vert \xi \Vert \rightarrow \infty $, satisfying other additional assumptions. In particular, this class includes the case where $f(z,\xi ) = \varphi (z)\psi (\xi )$, $\varphi &gt; 0$, $\psi $ being a convex function with linear growth as $\Vert \xi \Vert \rightarrow \infty $. In the second part of this work, using Crandall-Ligget’s iteration scheme, this result will permit us to prove existence and uniqueness of entropy solutions for the corresponding parabolic problem with initial data in $L^1$.
LA - eng
KW - Neumann problem; entropy solution
UR - http://eudml.org/doc/84540
ER -

References

top
  1. [1] L. Ambrosio – N. Fusco – D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, The Clarendom Press, Oxford University Press, 2000. Zbl0957.49001MR1857292
  2. [2] F. Andreu – V. Caselles – J.M. Mazón, A parabolic quasilinear problem for linear growth functionals, Rev. Mat. Iberoamericana 18 (2002), 135-185. Zbl1010.35063MR1924690
  3. [3] F. Andreu – V. Caselles – J.M. Mazón, Existence and uniqueness of solution for a parabolic quasilinear problem for linear growth functionals with L 1 data, Math. Ann. 322 (2002), 139-206. Zbl1056.35085MR1883392
  4. [4] F. Andreu – V. Caselles – J.M. Mazón, The Cauchy Problem for Linear Growth Functionals with, J. Evol. Equ. 3 (2003), 39-65. Zbl1028.35054MR1977428
  5. [5] F. Andreu – V. Caselles – J.M. Mazón, “Parabolic Quasilinear Equations Minimizing Linear Growth Functionals”, Progress in Mathematics, vol. 223, Birkhäuser-Verlag, Basel, 2004. Zbl1053.35002MR2033382
  6. [6] F. Andreu – V. Caselles – J.M. Mazón, A Strongly Degenerate Quasilinear Equation: the Parabolic Case, preprint, 2003. 
  7. [7] G. Anzellotti, Pairings Between Measures and Bounded Functions and Compensated Compactness, Ann. Mat. Pura Appl. (4) 135 (1983), 293-318. Zbl0572.46023MR750538
  8. [8] G.I. Barenblatt – M. Bertsch – R. Dal Passo – V.M. Prostokishin – M. Ughi, A mathematical Model of Turbulent Heat and Mass Transfer in Stable Stratified Shear Flow, J. Fluid Mech. 253 (1993), 341-358. Zbl0777.76041MR1233902
  9. [9] Ph. Bénilan – L. Boccardo – T. Gallouet – R. Gariepy – M. Pierre – J.L Vazquez, An L 1 -Theory of Existence and Uniqueness of Solutions of Nonlinear Elliptic Equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 241-273. Zbl0866.35037MR1354907
  10. [10] Ph. Bénilan – M.G. Crandall, Completely Accretive Operators, In: “Semigroups Theory and Evolution Equations”, Ph. Clement et al. (eds.), Marcel Dekker, 1991, pp. 41-76. Zbl0895.47036MR1164641
  11. [11] Ph. Bénilan – M.G. Crandall – A. Pazy, “Evolution Equations Governed by Accretive Operators”, Book in preparation. 
  12. [12] M. Bertsch – R. Dal Passo, Hyperbolic Phenomena in a Strongly Degenerate Parabolic Equation, Arch. Ration. Mech. Anal. 117 (1992), 349-387. Zbl0785.35056MR1148213
  13. [13] M. Bertsch – R. Dal Passo, A Parabolic Equation with Mean-Curvature Type Operator, In: “Progres Nonlinear Differential Equation Appl.”, F. Browder (ed.), 7 Birkhäuser, 1992, 89-97. Zbl0795.35064MR1167831
  14. [14] Ph. Blanc, On the regularity of the solutions of some degenerate parabolic equations, Comm. Partial Differential Equations 18 (1993), 821-846. Zbl0818.35050MR1218520
  15. [15] Ph. Blanc, Sur une classe d’equations paraboliques degeneréesa une dimension d’espace possedant des solutions discontinues, Ph.D. Thesis, number 798, Ecole Polytechnique Federale de Lausanne, 1989. Zbl0719.35051
  16. [16] D. Blanchard – F. Murat, Renormalized solutions on nonlinear parabolic problems with L 1 data: existence and uniqueness, Proc. Royal Soc. Edinburgh Sect. A 127 (1997), 1137-1152. Zbl0895.35050MR1489429
  17. [17] J. Carrillo – P. Wittbold, Uniqueness of Renormalized Solutions of Degenerate Elliptic-Parabolic problems, J. Differential Equations 156 (1999), 93-121. Zbl0932.35129MR1701806
  18. [18] M. G. Crandall, Nonlinear Semigroups and Evolution Governed by Accretive Operators, In: “Proceeding of Symposium in Pure Mat.”, Part I, F. Browder (ed.) A.M.S., Providence 1986, 305-338. Zbl0637.47039MR843569
  19. [19] M. G. Crandall – T. M. Liggett, Generation of Semigroups of Nonlinear Transformations on General Banach Spaces, Amer. J. Math. 93 (1971), 265-298. Zbl0226.47038MR287357
  20. [20] G. Dal Maso, Integral representation on B V ( Ω ) of Γ -limits of variational integrals, Manuscripta Math. 30 (1980), 387-416. Zbl0435.49016MR567216
  21. [21] R. Dal Passo, Uniqueness of the entropy solution of a strongly degenerate parabolic equation, Comm. Partial Differential Equations 18 (1993), 265-279. Zbl0815.35056MR1211734
  22. [22] E. De Giorgi – L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., Rend. Lincei (9) Mat. Appl., (8) 82 (1988), 199-210. Zbl0715.49014MR1152641
  23. [23] J. J. Duderstadt – G. A. Moses, “Inertial Confinement Fusion”, John Wiley & Sons, 1982. 
  24. [24] L. C. Evans – R. F. Gariepy, “Measure Theory and Fine Properties of Functions”, Studies in Advanced Math., CRC Press, 1992. Zbl0804.28001MR1158660
  25. [25] M. A. Krasnosel’skii – Ya. B. Rutickii, “Convex Functions and Orliz Spaces”, P. Noordholff, Groningen, 1961. Zbl0095.09103
  26. [26] R. Kohn – R. Temam, Dual space of stress and strains with application to Hencky plasticity, Appl. Math. Optim. 10 (1983), 1-35. Zbl0532.73039MR701898
  27. [27] S. N. Kruzhkov, First order quasilinear equations in several independent variables, Math. USSR-Sb. 10 (1970), 217-243. Zbl0215.16203
  28. [28] J. Leray – J. L. Lions, Quelques resultats de Visik sur les problemes elliptiques semi-lineaires par les metode de Minty et Browder, Bull. Soc. Math. France 93 (1965), 97-107. Zbl0132.10502MR194733
  29. [29] P. Rosenau, Free Energy Functionals at the High Gradient Limit, Phys. Rev. A 41 (1990), 2227-2230. 
  30. [30] W.P. Ziemer, “Weakly Differentiable Functions”, GTM 120, Springer Verlag, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.