Perturbations singulières d'équations hyperboliques du second ordre non linéaires
Annales mathématiques Blaise Pascal (2000)
- Volume: 7, Issue: 1, page 1-22
- ISSN: 1259-1734
Access Full Article
topHow to cite
topHajouj, Brahim. "Perturbations singulières d'équations hyperboliques du second ordre non linéaires." Annales mathématiques Blaise Pascal 7.1 (2000): 1-22. <http://eudml.org/doc/79214>.
@article{Hajouj2000,
author = {Hajouj, Brahim},
journal = {Annales mathématiques Blaise Pascal},
keywords = {hyperbolic variational equation},
language = {fre},
number = {1},
pages = {1-22},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Perturbations singulières d'équations hyperboliques du second ordre non linéaires},
url = {http://eudml.org/doc/79214},
volume = {7},
year = {2000},
}
TY - JOUR
AU - Hajouj, Brahim
TI - Perturbations singulières d'équations hyperboliques du second ordre non linéaires
JO - Annales mathématiques Blaise Pascal
PY - 2000
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 7
IS - 1
SP - 1
EP - 22
LA - fre
KW - hyperbolic variational equation
UR - http://eudml.org/doc/79214
ER -
References
top- [1]. A. Benaouda et M. Madaune-Tort: Singular perturbations for nonlinear hyperbolic-parabolic problems, SIAM J. on Math. Analysis, 18,(1), 1987. Zbl0627.35005MR871826
- [2]. S.C. Chikuwendu and J. Kevorkian: A perturbation method for Hyperbolic Equations with small non linearities. SIAM J. Appli-Math. Vol. 22, no 2, (1972), 235-258. Zbl0238.35006MR374635
- [3]. E. Feireisl: Global Attractors for Semilinear Damped Wave Equations With Supercritical Exponent. Journal of Differential Equations116, 431-447 (1995). Zbl0819.35097MR1318582
- [4]. V. Georgiev and G. Todorova: Existence of a solution of the Wave Equation With Nonlinear Damping and Source Terms. Journal of Differential Equations109, 295-308 (1994). Zbl0803.35092MR1273304
- [5]. B. Hajouj: Thèse de troisième cycle, Pau, (1985).
- [6]. G.C. Hsiao et R.J. Weinacht: Singular Perturbations for a Semilinear Hyperbolic Equation, Siam J. Math. Anal.14, (6), (1983), 1168-1179. Zbl0534.35068MR718817
- [7]. N.A. LAR'KIN: On a class of Quasi-Linear Hyperbolic Equations Having Global Solutions. Soviet Math. Dokl. Vol. 20 (1979). No. 1. Zbl0417.35053
- [8]. N.A. LAR'KIN: Boundary Problems in the large for a class of Hyperbolic Equations. Translated from Sibirsk. Mat. Zhurnal. Vol 18, No. 6, pp. 1414-1419, November-December, 1977. Zbl0398.35060MR499759
- [9]. N.A. LAR'KIN: Global Solvability of Boundary-Value Problems For a class of Quasilinear Hyperbolic Equations. Translated fromSibirsk. Mat. Zhurnal, Vol 22, No. 1, pp. 111-119, January-February, 1981. Zbl0462.35064MR605813
- [10]. J.L. Lions: Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod.Paris (1969). Zbl0189.40603MR259693
- [11]. J.L. Lions: Perturbations singulières dans les problèmes aux limites et en controle optimale. Lecture Notes in Mathematics, no 393, Springer-Verlag, BerlinNew York, 1968. Zbl0268.49001MR600331
- [12]. J.L. Lions et E. Magenes : Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris, 1968. Zbl0165.10801MR247243
- [13]. J.L. Lions and W.A. Strauss: Some Non-Linear Evolutions Equations. Bull. Soc. Math. France, 93, (1965), p. 43 à 96. Zbl0132.10501MR199519
- [14]. A. Milani: Long Time Existence and Singular Perturbation Results for Quasilinear Hyperbolic Equations With Small Parameter and Dissipation Term-III. Nonlinear Analysis. Theory, Methods & Applications, Vol. 16, No. 1, pp, 1-11, 1991. Zbl0760.35030MR1086822
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.