Perturbations singulières d'équations hyperboliques du second ordre non linéaires

Brahim Hajouj

Annales mathématiques Blaise Pascal (2000)

  • Volume: 7, Issue: 1, page 1-22
  • ISSN: 1259-1734

How to cite

top

Hajouj, Brahim. "Perturbations singulières d'équations hyperboliques du second ordre non linéaires." Annales mathématiques Blaise Pascal 7.1 (2000): 1-22. <http://eudml.org/doc/79214>.

@article{Hajouj2000,
author = {Hajouj, Brahim},
journal = {Annales mathématiques Blaise Pascal},
keywords = {hyperbolic variational equation},
language = {fre},
number = {1},
pages = {1-22},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Perturbations singulières d'équations hyperboliques du second ordre non linéaires},
url = {http://eudml.org/doc/79214},
volume = {7},
year = {2000},
}

TY - JOUR
AU - Hajouj, Brahim
TI - Perturbations singulières d'équations hyperboliques du second ordre non linéaires
JO - Annales mathématiques Blaise Pascal
PY - 2000
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 7
IS - 1
SP - 1
EP - 22
LA - fre
KW - hyperbolic variational equation
UR - http://eudml.org/doc/79214
ER -

References

top
  1. [1]. A. Benaouda et M. Madaune-Tort: Singular perturbations for nonlinear hyperbolic-parabolic problems, SIAM J. on Math. Analysis, 18,(1), 1987. Zbl0627.35005MR871826
  2. [2]. S.C. Chikuwendu and J. Kevorkian: A perturbation method for Hyperbolic Equations with small non linearities. SIAM J. Appli-Math. Vol. 22, no 2, (1972), 235-258. Zbl0238.35006MR374635
  3. [3]. E. Feireisl: Global Attractors for Semilinear Damped Wave Equations With Supercritical Exponent. Journal of Differential Equations116, 431-447 (1995). Zbl0819.35097MR1318582
  4. [4]. V. Georgiev and G. Todorova: Existence of a solution of the Wave Equation With Nonlinear Damping and Source Terms. Journal of Differential Equations109, 295-308 (1994). Zbl0803.35092MR1273304
  5. [5]. B. Hajouj: Thèse de troisième cycle, Pau, (1985). 
  6. [6]. G.C. Hsiao et R.J. Weinacht: Singular Perturbations for a Semilinear Hyperbolic Equation, Siam J. Math. Anal.14, (6), (1983), 1168-1179. Zbl0534.35068MR718817
  7. [7]. N.A. LAR'KIN: On a class of Quasi-Linear Hyperbolic Equations Having Global Solutions. Soviet Math. Dokl. Vol. 20 (1979). No. 1. Zbl0417.35053
  8. [8]. N.A. LAR'KIN: Boundary Problems in the large for a class of Hyperbolic Equations. Translated from Sibirsk. Mat. Zhurnal. Vol 18, No. 6, pp. 1414-1419, November-December, 1977. Zbl0398.35060MR499759
  9. [9]. N.A. LAR'KIN: Global Solvability of Boundary-Value Problems For a class of Quasilinear Hyperbolic Equations. Translated fromSibirsk. Mat. Zhurnal, Vol 22, No. 1, pp. 111-119, January-February, 1981. Zbl0462.35064MR605813
  10. [10]. J.L. Lions: Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod.Paris (1969). Zbl0189.40603MR259693
  11. [11]. J.L. Lions: Perturbations singulières dans les problèmes aux limites et en controle optimale. Lecture Notes in Mathematics, no 393, Springer-Verlag, BerlinNew York, 1968. Zbl0268.49001MR600331
  12. [12]. J.L. Lions et E. Magenes : Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris, 1968. Zbl0165.10801MR247243
  13. [13]. J.L. Lions and W.A. Strauss: Some Non-Linear Evolutions Equations. Bull. Soc. Math. France, 93, (1965), p. 43 à 96. Zbl0132.10501MR199519
  14. [14]. A. Milani: Long Time Existence and Singular Perturbation Results for Quasilinear Hyperbolic Equations With Small Parameter and Dissipation Term-III. Nonlinear Analysis. Theory, Methods & Applications, Vol. 16, No. 1, pp, 1-11, 1991. Zbl0760.35030MR1086822

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.