Hypercyclic convolution operators on entire functions of Hilbert-Schmidt holomorphy type
Annales mathématiques Blaise Pascal (2001)
- Volume: 8, Issue: 2, page 107-114
- ISSN: 1259-1734
Access Full Article
topHow to cite
topPetersson, Henrik. "Hypercyclic convolution operators on entire functions of Hilbert-Schmidt holomorphy type." Annales mathématiques Blaise Pascal 8.2 (2001): 107-114. <http://eudml.org/doc/79231>.
@article{Petersson2001,
author = {Petersson, Henrik},
journal = {Annales mathématiques Blaise Pascal},
keywords = {exponential type; space of entire functions of Hilbert-Schmidt type; Hilbert space; continuous convolution operators; hypercyclic},
language = {eng},
number = {2},
pages = {107-114},
publisher = {Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal},
title = {Hypercyclic convolution operators on entire functions of Hilbert-Schmidt holomorphy type},
url = {http://eudml.org/doc/79231},
volume = {8},
year = {2001},
}
TY - JOUR
AU - Petersson, Henrik
TI - Hypercyclic convolution operators on entire functions of Hilbert-Schmidt holomorphy type
JO - Annales mathématiques Blaise Pascal
PY - 2001
PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
VL - 8
IS - 2
SP - 107
EP - 114
LA - eng
KW - exponential type; space of entire functions of Hilbert-Schmidt type; Hilbert space; continuous convolution operators; hypercyclic
UR - http://eudml.org/doc/79231
ER -
References
top- [1] R. Aron and J. Bés. Hypercyclic differentiation operators. Function Spaces (Proc. Conf. Edwardsville, IL, 1998), Amer. Math. Soc. Providence, RI, pages 39-42, 1999. MR 2000b:47019. Zbl0938.47004MR1678318
- [2] G.D. Birkhoff. Démonstration d'un théoreme élémentaire sur les fonctions entières. C.R. Acad. Sci. Paris, 189:437-475, 1929. Zbl55.0192.07JFM55.0192.07
- [3] S. Dineen. Complex analysis on Infinite Dimensional Spaces. Springer-Verlag, 1999. Zbl1034.46504MR1705327
- [4] A.W. Dwyer. Partial differential equations in Fischer-Fock spaces for the Hilbert-Schmidt holomorphy type. Bull. Amer. Soc., 77:725-730, 1971. MR 44#7288. Zbl0222.46019MR290103
- [5] R.M. Gethner and J.H. Shapiro. Universal vectors for operators on spaces of holomorphic functions. Proc. Amer. Math. Soc., No. 2, 100:281-288, 1987. MR 88g:47060. Zbl0618.30031MR884467
- [6] G. Godefroy and J.H. Shapiro. Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal., 98:229-269, 1991. MR 92d:47029. Zbl0732.47016MR1111569
- [7] K.-G. Grosse-Erdmann. Universal families and hypercyclic operators. Bull. Amer. Math. Soc. (N.S.). No. 3, 36:345-381, 1999. MR 2000c:47001. Zbl0933.47003MR1685272
- [8] C. Gupta. Convolution operators and holomorphic mappings on a Banach space. Sem. Anal. Mod., No. 2, 1969. Univ. Sherbrooke. Québec. Zbl0243.47016
- [9] J. Horvath. Topological Vector Spaces and Distributions, volume 1. Addison-Wesley, Reading Massachusetts, 1966. Zbl0143.15101MR205028
- [10] C. Kitai. Invariant closed sets for linear operators. Ph.D. thesis, Univ. of Toronto, 1982.
- [11] G.R. MacLane. Sequences of derivatives and normal families. J. Analyse Math., pages 72-87, 1952/53. MR 14:741d. Zbl0049.05603MR53231
- [12] B. Malgrange. Existence et approximation des solutions des équations aux dérivativées partielles et des équations de convolution. Ann. Inst. Fourier, 6:271-354, 1955. Zbl0071.09002MR86990
- [13] H. Petersson. Fischer decompositions of entire functions of Hilbert-Schmidt holomorphy type. preprint and submitted, 2001. MR2066132
- [14] C.J. Read. The invariant subspace problem for a class of Banach spaces. ii. Israel J. Math., 63:1-40, 1998. MR 90b:47013. Zbl0782.47002MR959046
- [15] F. Treves. Linear partial differential equations with constant coefficients. Gordon and Breach, 1966. Zbl0164.40602MR224958
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.