Un théorème de la limite centrale dans C ( S )

B. Heinkel

Annales scientifiques de l'Université de Clermont. Mathématiques (1976)

  • Volume: 61, Issue: 14, page 37-42
  • ISSN: 0249-7042

How to cite

top

Heinkel, B.. "Un théorème de la limite centrale dans $C(S)$." Annales scientifiques de l'Université de Clermont. Mathématiques 61.14 (1976): 37-42. <http://eudml.org/doc/80452>.

@article{Heinkel1976,
author = {Heinkel, B.},
journal = {Annales scientifiques de l'Université de Clermont. Mathématiques},
language = {fre},
number = {14},
pages = {37-42},
publisher = {UER de Sciences exactes et naturelles de l'Université de Clermont},
title = {Un théorème de la limite centrale dans $C(S)$},
url = {http://eudml.org/doc/80452},
volume = {61},
year = {1976},
}

TY - JOUR
AU - Heinkel, B.
TI - Un théorème de la limite centrale dans $C(S)$
JO - Annales scientifiques de l'Université de Clermont. Mathématiques
PY - 1976
PB - UER de Sciences exactes et naturelles de l'Université de Clermont
VL - 61
IS - 14
SP - 37
EP - 42
LA - fre
UR - http://eudml.org/doc/80452
ER -

References

top
  1. [1] R.M. Dudley: The sizes of compact subsets of Hilbert space and continuity of gaussian processes. J. Functional Analysis1 (1967) n° 3 p.290-330 Zbl0188.20502MR220340
  2. [2] X. Fernique: Régularité des trajectoires des fonctions aléatoires gaussiennes - Ecole d'Eté de Probabilités de St Flour4 (1974) Lecture Notes in Math. 480Springer p. 1-96. Zbl0331.60025MR413238
  3. [3] E. Gine: On the central-limit theorem for sample continuous processes - The Ann. of. Prob.2 (1974) n° 4 p. 629-641. Zbl0288.60017MR370695
  4. [4] B. Heinkel: Mesures majorantes et Théorème de la Limite Centrale dans C(S) (à paraître dans Z. Wahrscheinlichkeitstheorie and Verw.Gebiete) Zbl0336.60021
  5. [5] N.C. Jain et M.B. Marcus: Central-Limit theorems for C(S) - valued random variables. J. Functional Analysis19 (1975) p. 216-231. Zbl0305.60004MR385994
  6. [6] N.C. Jain et M.B. Marcus: Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions. Ann. Ins. Fourier24 (1974) 2 p. 117-141 Zbl0283.60041MR413239

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.