Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions
Naresh C. Jain; Michael B. Marcus
Annales de l'institut Fourier (1974)
- Volume: 24, Issue: 2, page 117-141
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topJain, Naresh C., and Marcus, Michael B.. "Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions." Annales de l'institut Fourier 24.2 (1974): 117-141. <http://eudml.org/doc/74167>.
@article{Jain1974,
abstract = {Let $\lbrace X(t),\; t\in [0,1]^n\rbrace $ be a stochastically continuous, separable, Gaussian process with $E[X(t+h)-X(t)]^2=\sigma ^2(\vert h\vert )$. A sufficient condition, in terms of the monotone rearrangement of $\sigma $, is obtained for $X(t)$ to have continuous sample paths almost surely. This result is applied to a wide class of random series of functions, in particular, to random Fourier series.},
author = {Jain, Naresh C., Marcus, Michael B.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {117-141},
publisher = {Association des Annales de l'Institut Fourier},
title = {Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions},
url = {http://eudml.org/doc/74167},
volume = {24},
year = {1974},
}
TY - JOUR
AU - Jain, Naresh C.
AU - Marcus, Michael B.
TI - Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions
JO - Annales de l'institut Fourier
PY - 1974
PB - Association des Annales de l'Institut Fourier
VL - 24
IS - 2
SP - 117
EP - 141
AB - Let $\lbrace X(t),\; t\in [0,1]^n\rbrace $ be a stochastically continuous, separable, Gaussian process with $E[X(t+h)-X(t)]^2=\sigma ^2(\vert h\vert )$. A sufficient condition, in terms of the monotone rearrangement of $\sigma $, is obtained for $X(t)$ to have continuous sample paths almost surely. This result is applied to a wide class of random series of functions, in particular, to random Fourier series.
LA - eng
UR - http://eudml.org/doc/74167
ER -
References
top- [1] R. P. BOAS Jr. and M. B. MARCUS, Inequalities involving a function and its inverse, SIAM J. Math. Anal., 4 (1973). Zbl0235.26009MR48 #8724
- [2] DUDLEY R. M., The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Functional Analysis, 1 (1967), 290-330. Zbl0188.20502MR36 #3405
- [3] R. M. DUDLEY, Sample functions of the Gaussian process, Ann. of Probability, 1 (1973), 66-103. Zbl0261.60033MR49 #11605
- [4] X. FERNIQUE, Continuité des processus Gaussiens, C.R. Acad. Sci. Paris, 258 (1964), 6058-6060. Zbl0129.30101MR29 #1662
- [5] G. H. HARDY, J. E. LITTLEWOOD and G. POLYA, Inequalities, Cambridge Univ. Press, (1934), Cambridge, England. Zbl0010.10703JFM60.0169.01
- [6] N. C. JAIN, Conditions for the continuity of sample paths of a Gaussian process, unpublished manuscript, (1972).
- [7] N. C. JAIN and G. KALLIANPUR, A note on the uniform convergence of stochastic processes, 41 (1970), 1360-1362. Zbl0232.60040MR42 #6931
- [8] J. P. KAHANE, Some random series of functions, (1968), D. C. Heath, Lexington, Mass. Zbl0192.53801MR40 #8095
- [9] E. LUKACS, Characteristic functions, Second Edition, (1970), Hafner, New York. Zbl0201.20404MR49 #11595
- [10] M. B. MARCUS, A comparaison of continuity conditions for Gaussian processes., Ann. of Probability, 1 (1973), 123-130. Zbl0265.60039MR49 #11606
- [11] M. B. MARCUS, Continuity of Gaussian processes and random Fourier series, Ann. of Probability, 1 (1973), 968-981. Zbl0277.60022MR50 #8673
- [12] M. B. MARCUS and L. A. SHEPP, Continuity of Gaussian processes., Trans. Amer. Math. Soc., 151 (1970), 377-392. Zbl0209.49201MR41 #9340
- [13] J. L. DOOB, Stochastic processes, (1953), John Wiley and Sons, New York. Zbl0053.26802MR15,445b
Citations in EuDML Documents
top- Michael B. Marcus, Gilles Pisier, Random Fourier series on locally compact abelian groups
- B. Heinkel, Un théorème de la limite centrale dans
- G. Pisier, Sur l'espace de Banach des séries de Fourier aléatoires presque sûrement continues
- Thierry Jeulin, Marc Yor, Moyennes mobiles et semimartingales
- G. Pisier, Conditions d'entropie assurant la continuité de certains processus et applications à l'analyse harmonique
- Constantin Nanopoulos, Photis Nobelis, Régularité et propriétés limites des fonctions aléatoires
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.