Localisation de formes quadratiques. II

Max Karoubi

Annales scientifiques de l'École Normale Supérieure (1975)

  • Volume: 8, Issue: 1, page 99-155
  • ISSN: 0012-9593

How to cite

top

Karoubi, Max. "Localisation de formes quadratiques. II." Annales scientifiques de l'École Normale Supérieure 8.1 (1975): 99-155. <http://eudml.org/doc/81951>.

@article{Karoubi1975,
author = {Karoubi, Max},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {1},
pages = {99-155},
publisher = {Elsevier},
title = {Localisation de formes quadratiques. II},
url = {http://eudml.org/doc/81951},
volume = {8},
year = {1975},
}

TY - JOUR
AU - Karoubi, Max
TI - Localisation de formes quadratiques. II
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1975
PB - Elsevier
VL - 8
IS - 1
SP - 99
EP - 155
LA - fre
UR - http://eudml.org/doc/81951
ER -

References

top
  1. [1] A. BAK, Solution to the Congruence Subgroup Problem for λ-Hermitian Forms (à paraître). 
  2. [2] A. BAK, Weak Approximation for Central Extensions of Quadratic Elementary Groups (à paraître). 
  3. [3] A. BAK et W. SCHARLAU, Witt Groups of Orders and Finite Groups (à paraître). Zbl0288.16016
  4. [4] H. BASS, Algebraic K-Theory, Benjamin, 1967. Zbl0174.30302
  5. [5] H. BASS, J. MILNOR et J. P. SERRE, Solution of the Congruence Subgroup Problem for SLn (n ≧ 3) and Sp2n (n ≧ 2) (Publ. I. H. E. S., n° 33, 1967, p. 59-137). Zbl0174.05203MR39 #5574
  6. [6] H. BASS, Unitary Algebraic K-Theory (Lecture Notes in Math., n° 343, 1973, p. 57-209). Zbl0299.18005MR51 #8211
  7. [7] H. BASS, Some Problems in "Classical" Algebraic K-Theory (Lecture Notes in Math., n° 342, 1973, p. 3-70). Zbl0384.18008MR53 #13358
  8. [8] S. E. CAPPELL, Mayer-Vietoris Sequences in Hermitian K-Theory (Lecture Notes in Math., n° 342, 1973, p. 478-512). Zbl0298.57021MR50 #11273
  9. [9] A. H. DURFEE, Diffeomorphism Classification of Isolated Hypersurface Singularities (thèse, Cornell University). 
  10. [10] I. M. GEL'FAND et A. S. MIŠČENKO, Quadratic Forms over Commutative Group Rings and the K-Theory (Funt. Anal. and Appl., vol. 3, 1969, p. 277-281). Zbl0239.55004MR41 #9243
  11. [11] M. KAROUBI, Algèbres de Clifford et K-théorie (Ann. sc. Éc. Norm. Sup., 4e série, t. 1, 1968, p. 161-270). Zbl0194.24101MR39 #287
  12. [12] M. KAROUBI, La périodicité de Bott en K-théorie générale (Ann. sc. Éc. Norm. Sup., 4e série, t. 4., 1971, p. 63-95). Zbl0215.38902MR44 #2803
  13. [13] M. KAROUBI et O. VILLAMAYOR, K-théorie algébrique et K-théorie topologique, II, (Math. Scand. 32, 1973, p. 57-86). Zbl0272.18009MR48 #6214
  14. [14] M. KAROUBI, Périodicité de la K-théorie hermitienne (Lecture Notes in Math., n° 343, 1973, p. 301-411). Zbl0274.18016MR52 #3284
  15. [15] M. KAROUBI, Théorie de Quillen et homologie du groupe orthogonal (à paraître). Zbl0478.18008
  16. [16] M. KNEBUSCH, Grothendieck und Wittringe von Nichtausgearteten Symmetrischen Bilinearformen (S-Ber. Heidelberger Akad. Wiss., vol. 3, 1969-1970, Abh Springer, Berlin-Göttingen-Heidelberg, 1970). Zbl0256.15016
  17. [17] M. KNEBUSCH et W. SCHARLAU, Quadratische Formen und Quadratische Reziprozitätsgesetze über Algebraischen Zahlkörpen (Math. Z., vol. 121, 1971, p. 346-368). Zbl0216.04602MR50 #4486
  18. [18] M. KNESER et D. PUPPE, Quadratische Formen und Verschlingungs-Invarianten von Knoten (Math. Z. vol. 58, 1953, p. 376-384). Zbl0050.39801MR15,100c
  19. [19] J. MILNOR, Introduction to Algebraic K-Theory (Annals of Math. Studies, vol. 72, 1971). Zbl0237.18005MR50 #2304
  20. [20] J. MILNOR, Algebraic K-Theory and Quadratic Forms (Invent. Math., vol. 9, 1970, p. 318-344). Zbl0199.55501MR41 #5465
  21. [21] J. MILNOR et D. HUSEMOLLER, Symmetric Bilinear Forms, Springer, 1973. Zbl0292.10016MR58 #22129
  22. [22] A. S. MIŠČENKO, Homotopy Invariants of Non-Simply Connected Manifolds, I, Rational Invariants (Izv. Akad. Nauk., S. S. S. R., ser. Math., vol. 34, 1970, p. 501-514). Zbl0232.55015
  23. [23] S. P. NOVIKOV, The Algebraic Construction and Properties of Hermitian Analogues of K-Theory for Rings with Involution from the Point of View of Hamiltonian Formalism. Some Applications to Differential Topology and the Theory of Characteristic Classes (I, Izv. Akad. Nauk. S. S. S. R., ser Math., vol. 34, 1970, p. 253-288, II, ibid., p. 485-500). Zbl0216.45003MR45 #1994
  24. [24] O. T. O'MEARA, Introduction to Quadratic Forms, Springer, 1963. Zbl0107.03301MR27 #2485
  25. [25] A. A. RANICKI, Algebraic L-Theory IV., Polynomial Extension Rings. Commentarii Math, Helv., vol. 49, 2, 1974, p. 137-167. Zbl0293.18021MR54 #2760d
  26. [26] W. SCHARLAU, Quadratic Reciprocity Laws (J. Number Theory, vol. 4, 1972, p. 78-97). Zbl0241.12005MR45 #1835
  27. [27] W. SCHARLAU, Remarks on Symmetric Bilinear Forms over Euclidean Domains (à paraître). 
  28. [28] J. P. SERRE, Cours d'arithmétique, Presses Universitaires de France, Paris, 1970. Zbl0225.12002MR41 #138
  29. [29] R. SHARPE, On the Structure of the Unitary Steinberg Group (à paraître). Zbl0251.20047
  30. [30] T. A. SPRINGER, Quadratic Forms over Fields with a Discrete Valuation. (I, Indag. Math., vol. 17, 1955, p. 352-362). Zbl0067.27605MR17,17a
  31. [31] C. T. C. WALL, On the Classification of Hermitian Forms. IV, Global Rings (à paraître). Zbl0278.16017
  32. [32] C. T. C. WALL, On the Axiomatic Foundations of the Theory of Hermitian Forms (Proc. Cambridge Phil. Soc., vol. 67, 1970, p. 243-250). Zbl0197.31103MR40 #4285
  33. [33] C. T. C. WALL, Quadratic Forms on Finite Groups (Bull. Lond. Math. Soc., vol. 4, 1972, p. 156-160). Zbl0251.20024MR48 #435
  34. [34] M. KAROUBI, Comptes rendus, 279, série A, 1974, p. 487-490. Zbl0302.18008MR52 #10850
  35. [35] M. KAROUBI, (Ann. scient. Éc. Norm. Sup., 4e série, t. 7, 1974, p. 359-404). Zbl0325.18011MR52 #5764
  36. [36] J.-P. SERRE, Corps locaux, Hermann, Paris (1968). Zbl0137.02601MR50 #7096

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.